Skip to main content
Log in

Functional role of nitric oxide in the neural control of circulation

  • Oral Presentations
  • Published:
Neurophysiology Aims and scope

Abstract

The authors analyze the published data and results of their own experiments, and, on the basis of this information, interpret the role of nitric oxide in neural inhibitory control of circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurin, “Functional role of nitrix oxide in the central nervous system,”Usp. Fiziol Nauk,28, 53–60 (1997).

    PubMed  CAS  Google Scholar 

  2. D. S. Bredt, P. M. Hwang, and S. H. Snyder, “Location of nitric oxide synthase indicating a neural role for nitric oxide,”Nature,347, 768–770 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. D. S. Bredt and S. H. Snyder, “Nitric oxide, a novel neuronal messenger,”Neuron.,8, 3–11 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. G. A. Vincent, “Neurons that say NO,”Trends Neurosci.,15, 108–113 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. R. G. Knowles and S. Moncada, “Nitric oxide synthases in mammals,”Biochem. J.,298, 249–258 (1994).

    PubMed  CAS  Google Scholar 

  6. T. M. Dawson, V. L. Dawson, and S. H. Snyder, “A novel neuronal messenger molecule in brain: the free radical, nitric oxide,”Ann. Neurol.,32, 297–311 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. I. J. Llewellyn-Smith, Z.-M. Song, M. Costa, et al., “Ultrastructural localization of nitric oxide synthase immunoreactivity in guinea-pig enteric neurons,”Brain Res.,577, 337–342 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. W. Kummer and B. Mayer, “Nitric oxide synthase-immunoreactive axons innervating the guinea-pig lingual artery: An ultrastructural immunohistochemical study using elastic brightfield imaging,”Histochemistry,99, 175–179 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. H. Bult, G. E. Boeckxtaens, P. A. Pelckmans, et al., “Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter,”Nature,345, 346–347 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. N. Toda and T. Okamura, “Possible role of NO in transmitting information from vasodilator nerve to cerebroarterial muscle,”Biochem. Biophys., Res. Commun.,170, 308–313 (1990).

    Article  CAS  Google Scholar 

  11. G. E. Boeckxtaens, P. A. Pelckmans, J. J. Bogers, et al., “Release of nitrix oxide upon stimulation of non-adrenergic non-cholinergic nerves in the rat gastric fundus,”J. Pharmacol. Exp. Ther.,256, 441–447 (1991).

    Google Scholar 

  12. M. J. Rand, “NANC transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission,”Clin. Exp. Pharmacol. Physiol.,19, 147–169 (1992).

    PubMed  CAS  Google Scholar 

  13. C. J. Lovenstein, J. L. Dinerman, and S. H. Snyder, “Nitric oxide, a physiological messenger,”Ann. Int. Med.,120, 227–237 (1994).

    Google Scholar 

  14. S. H. Snyder, “Nitric oxide: first in a new class of neurotransmitter,”Science,257, 494–496 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. S. H. Snyder and D. S. Bredt, “Nitric oxide as a neuronal messenger,”Trends Pharmacol. Sci.,12, 125–128 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. J. Gartwaite, “Glutamate, nitric oxide and cell-cell signalling in the nervous system,”Trends Neurosci.,14, 60–67 (1991).

    Article  Google Scholar 

  17. E. Anggard, “Nitrix oxide: mediator, murderer, and medicine,”Lancet,343, 1199–1206 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. A. Berdeaux, “Nitric oxide: an ubiquitous messenger,”Fundat. Clin. Pharmacol.,7, 401–411 (1993).

    Article  CAS  Google Scholar 

  19. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide: physiology, pathophysiology and pharmacology,”Pharmacol. Rev.,43, 109–142 (1991).

    PubMed  CAS  Google Scholar 

  20. A. Calver, J. Collier, and P. Vallance, “Nitric oxide and cardiovascular control,”Exp. Physiol.,78, 303–326 (1996).

    Google Scholar 

  21. Ch. M. Markov, “Nitric oxide and carbon oxide—a novel class of signal molecules,”Usp. Fiziol. Nauk,27, 30–43 (1996).

    PubMed  CAS  Google Scholar 

  22. C. J. S. Hassall, M. J. Saffrey, A. Belai, et al., “Nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in a subpopulation of intrinsic neurons of the guinea-pig heart,”Neurosci. Lett.,143, 65–68 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. L. Klimaschewski, W. Kummer, B. Mayer, et al., “Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea pig heart,”Circ Res.,71, 1533–1537 (1992).

    PubMed  CAS  Google Scholar 

  24. K. Tanaka, C. J. S. Hassal, and G. Burnstock, “Distribution of intracardiac neurones and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart,”Cell Tissue Res.,273, 293–300 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. H. H. H. Shmidt, G. D. Gagne, M. Nakane, et al., “Mapping of neuronal nitrix oxide synthase in the rat suggests frequent co-localization with NADPH-diaphorase, but not with soluble guanylate cyclase, and novel paraneural functions for nitrinergic signal transduction,”J. Histochem. Cytochem.,40, 1439–1456 (1992).

    Google Scholar 

  26. J. L. Balligand, R. A. Kelly, P. A. Marsden, et al., “Control of cardiac muscle cell function by an endogenous nitric oxide signaling system,”Proc. Natl. Acad. Sci. USA,90, 347–351 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Y. Hisa, T. Uno, N. Tadaki, et al., “NADPH-diaphorase and nitric oxide synthase in the canine superior cervical ganglion,”Cell Tissue Res.,279 629–631 (1995).

    PubMed  CAS  Google Scholar 

  28. Zhi Li, Hon-Chi Lee, J. N. Bates, et al., “Nitric oxide inhibits sodium currents of baroreceptor neurons by nitrosylation independent of cyclic GMP,”Circ. Res.,76, 426–433 (1995).

    Google Scholar 

  29. W. P. Gai, J. P. Messenger, Yh. Yu, et al., “Nitric oxide synthesizing neurons in the central subnucleus of the nucleus tractus solitarius provide a major innervation of the rostral nucleus ambiguus in the rabbit,”J. Comp. Neurol.,357, 348–361 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. L. V. Ravichandran, R. A. Johns, and A. Rengasamy, “Direct and reversible inhibition of endothelial nitric oxide synthase by nitric oxide,”Am. J. Physiol. (Heart Circ. Physiol.),37, H2216-H2223 (1995).

    Google Scholar 

  31. M. Feelish, W. Bloch, and K. Addicks, “Control of intraaxonal catecholamine storage in cardiac sympathetic nerve fibres by endogenous nitric oxide,”Endothelium,1, 25 (1993).

    Google Scholar 

  32. R. Busse, A. Mulsh, I. Fleming, and M. Hecker, “Mechanisms of nitric oxide release from the vascular endothelium,”Circulation,87, Suppl. V, V18-V25 (1993).

    CAS  Google Scholar 

  33. N. Toda and T. Okamura, “Role of NO in neurally induced cerebrovascular relaxation,”J. Pharmacol. Exp. Ther.,258, 1027–1032 (1991).

    PubMed  CAS  Google Scholar 

  34. J. Zanzinger, J. Czachurski, and H. Seller, “Inhibition of sympathetic vsoconstriction is a major principle of vasodilation by nitric oxidein vivo,”Circ. Res.,75, 1073–1077 (1994).

    PubMed  CAS  Google Scholar 

  35. P. J. Lacolley, S. J. Lewis, and M. J. Brody, “Role of sympathetic nerve activity in the generation of vascular nitric oxide in urethane-anesthetized rats,”Hypertension,17, 881–887 (1991).

    PubMed  CAS  Google Scholar 

  36. A. A. Pegoraro, O. A. Carretero, D. H. Sigmon, and W. H. Beierwaltes, “Sympathetic modulation of endothelium-derived relaxing factor,”Hypertension,19, 643–647 (1992).

    PubMed  CAS  Google Scholar 

  37. C. Chen and G. G. Schofield, “Nitric oxide modulates Ca2+ channel currents in rat sympathetic neurons,”Eur. J. Pharmacol.,243, 83–86 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. U. Haque, F. Agani, C. H. Chang, and N. R. Prabhakar, “Nitric oxide a novel chemical messenger in carotid body,”FASEB J.,7, 431 (1993).

    Google Scholar 

  39. N. R. Prabhakar, M. Haxhin, and H. Cao, “Nitric oxide and oxygen chemoreception of the carotid body,”Neurosci. Abstr.,18, 1197 (1992).

    Google Scholar 

  40. Z. Z. Wang, B. Dinger, S. I. Fidone, and L. J. Stensans, “Physiological role of nitric oxide (NO) in the cat carotid body,”FASEB J.,7, 431 (1993).

    Google Scholar 

  41. A. Zanchi, V. C. Schaad, M. C. Osterheld, et al., “Effects of chronic NO-synthase inhibition in rats on renin-angiotensin system and sympathetic nervous system,”Am. J. Physiol.,269, (Heart Circ. Physiol.,37), H2267-H2273 (1995).

    Google Scholar 

  42. I. Sakuma, H. Togashi, M. Yoshioka, et al., “NG-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activityin vivo,”Circ. Res.,70, 607–611 (1992).

    PubMed  CAS  Google Scholar 

  43. H. Miyano, T. Kawada, W. Matsuura, et al., “Nitric oxide blockade increases sympathetic nerve activities without changing dynamic property of baroreflex,”Circulation,92, Suppl. 1, 1–13 (1995).

    Google Scholar 

  44. J. L. Liu, H. Murakami, and I. H. Zucker, “Nitric oxide affects the arterial baroreflex control of renal sympathetic nerve activity in conscious rabbits,”Circulation,92, Suppl. 1, 1–13 (1995).

    Google Scholar 

  45. Naoyoshi Minami, Yutaka Imai, Jun-Ichiro Hashimoto, and Keishi Abe, “The role of nitric oxide in the baroreceptor-cardiac reflex,”Am. J. Physiol.,269 (Heart Circ. Physiol. 38), H851-H855 (1995).

    PubMed  CAS  Google Scholar 

  46. Z. Y. Du, G. J. Dusting, and O. L. Woodman, “Baroreceptor reflexes and vascular reactivity during inhibition of nitric oxide synthesis in conscious rabbits,”Eur. J. Pharmacol.,214, 21–26 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. K. E. Loke, C. G. Sobey, G. J. Dusting, and O. L. Woodman, “Cholinergic neurogenic vasodilation is mediated by nitric oxide in the dog hindlimb,”Circ. Res.,28, 542–547 (1994).

    CAS  Google Scholar 

  48. W. Q. Shen, M. Ochoa, X. B. Xu, et al., “Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation following carotid chemoreflex activation in concsious dogs,”Am. J. Physiol.,267, H605-H613 (1994).

    PubMed  CAS  Google Scholar 

  49. K. Tanaka, F. Goton, and S. Tomi, “Inhibition of NO-synthesis induces a significant reduction in local cerebral blood flow in the rat,”Neurosci. Lett.,127, 129–132 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. L. N. Shapoval, V. F. Sagach, and L. S. Pobegailo, “Nitric oxide influences ventrolateral medullary mechanisms of vasomotor control in the cat,”Neurosci. Lett.,132, 47–50 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. J. Zanzinger, J. Czachurski, and H. Seller, “Inhibition of basal and reflex-mediated sympathetic activity in the RVLM by nitric oxide,”Am. J. Physiol.,268, R958-R962 (1995).

    PubMed  CAS  Google Scholar 

  52. S. Harada, S. Tokunaga, M. Momohara, et al., “Inhibition of nitric oxide formation in the nucleus tractus solitarius increases renal sympathetic nerve activity in rabbits,”Circ. Res.,72, 511–516 (1993).

    PubMed  CAS  Google Scholar 

  53. T. Tagawa, T. Imaizumi, S. Harada, et al., “Nitric oxide influences neuronal activity in the nucleus tractus solitarius of rat brainstem slices,”Circ. Res.,75, 70–76 (1994).

    PubMed  CAS  Google Scholar 

  54. H. Togashi, I. Sakuma, M. Yoshida, et al., “A central nervous system action of nitric oxide in blood pressure regulation,”J. Pharmacol. Exp. Ther.,262, 343–347 (1992).

    PubMed  CAS  Google Scholar 

  55. H. Togashi, M. Yoshioka, I. Sakuma, et al., “Central sympathectomy attenuates the hypertensive response to the acute and chronic administration of nitric oxide synthase inhibitors,”Circulation,90, Suppl. 1, 1–33 (1994).

    Google Scholar 

  56. A. V. Ferguson, T. Horn, P. M. Smith, et al., “Nitric oxide actions in paraventricular nucleus: neurochemical and cardiovascular implications,” in:Abstracts of XXXII International Congress of Physiological Sciences, Part 3, Glasgow, (1993), p. 215.

  57. J. S. Bains and A. V. Ferguson, “Inhibition of nitric oxide synthase potentiates cardiovascular responses to electric stimulation of the subfornical organ,” in:Abstracts of XXXII International Congress of Physiological Sciences, Part 2, Glasgow (1993), p. 249.

  58. S. J. Lewis, H. Ohta, B. Machado, et al., “Microinjection of S-nitrosocysteine into the nucleus tractus solitarii decreases arterial pressure and heart rate via activation of soluble guanylate cyclase,”Eur. J. Pharmacol.,202, 135–136 (1991).

    Article  PubMed  CAS  Google Scholar 

  59. B. N. Machado and L. G. H. Bonagamba, “Microinjection of S-nitrosocysteine into the nucleus tractus solitarii, of conscious rats decreases arterial pressure but L-glutamate does not,”Eur. J. Pharmacol. 221, 179–182 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. L. N. Shapoval, V. F. Sagach, L. S. Pobegailo, and L. B. Doloman, “Nitric oxide and sympathoexcitatory cardiovascular neurons of the ventrolateral medulla in cats,”Neirofiziologiya/Neurophysiology,28, 111–120 (1996).

    CAS  Google Scholar 

  61. E. D. DiPaola, M. N. Vidal, and G. Nistico, “L-glutamate evokes the release of an endothelium-derived relaxing factor-like substance from the rat nucleus tractus solitarius,”J. Cardiovasc. Pharmacol.,17, 5269–5272 (1991).

    Google Scholar 

  62. M. C. Martins-Pinge, I. Baraldi-Passy, S. L. Cravo, and O. U. Lopes, “Role of nitric oxide within rostral ventrolateral medulla in awake rats,”J. Auton. Nerv. Syst.,65, 81 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapoval, L.N., Sagach, V.F. & Pobegailo, L.S. Functional role of nitric oxide in the neural control of circulation. Neurophysiology 31, 10–13 (1999). https://doi.org/10.1007/BF02515002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515002

Keywords

Navigation