Researches on Population Ecology

, Volume 38, Issue 1, pp 87–94 | Cite as

Cyclicity and synchrony of historical outbreaks of the beech caterpillar,Quadricalcarifera punctatella (Motschulsky) in Japan

  • Andrew Liebhold
  • Naoto Kamata
  • Thomas Jacob
Original Paper

Abstract

Historical records of the incidence of defoliation caused by the beech caterpillar,Quadricalcarifera punctatella (Motschulsky) in northern Japanese prefectures from 1910–1993 were used to characterize the cyclicity and synchrony of outbreaks. Cyclicity and synchrony were quantified using standard Box-Jenkins time series methods as well as spectral analysis and simple Markov models. Statistical analysis of these records indicated the presence of quasi-periodic behavior with 8–11 yr between outbreaks. Outbreaks tended to occur synchronously among different prefectures, though the onset of outbreaks was typically lagged. This study illustrates the use of specific statistical methods for characterizing cyclicity and synchrony from crude records of the presence/absence of outbreaks.

Key words

cyclicity synchrony time series spectral analysis autocorrelation function Markov model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berryman, A. A. (1990) Population theory: an essential ingredient in pest prediction, management, and policy-making.American Entomologist 37: 138–142.Google Scholar
  2. Blais, J. R., R. M. Prentice, W. L. Sippell and D. R. Wallace. (1955) Effects of weather on forest tent caterpillar,Malacosoma disstria Hbn. in central Canada in the spring of 1953.Canadian Entomologist 87: 1–8.CrossRefGoogle Scholar
  3. Box, G. E. P. and G. M. Jenkins (1976)Time series analysis: forecasting and control (Revised edition). Holen-Day, San Francisco.Google Scholar
  4. Burroughs, W. J. (1992)Weather cycles: real or imaginary? Cambridge University Press, Cambridge.Google Scholar
  5. Hanski, I. and I. P. Woiwod (1993) Spatial synchrony in the dynamics of moth and aphid populations.Journal of Animal Ecology 62: 656–668.CrossRefGoogle Scholar
  6. Hardy, Y. V., A. Lafond and L. Hamel (1983) The epidemiology of the current spruce budworm outbreak in Quebec.Forest Science 29: 715–725.Google Scholar
  7. Hosmer, D. W., Jr., and S. Lemeshow (1989)Applied logistic regression. John Wiley & Sons, New York.Google Scholar
  8. Igarashi, M. (1975) The beech caterpillar,Quadricalcarifera punctatella (Motshulsky) (Lep., Notodontidae), as an important defoliatior of beech,Fagus crenata Blume.Monthly Report of Tohoku Research Center, Forestry and Forest Products Research Institute 162: 1–4 (in Japanese).Google Scholar
  9. Ims, R. A. and H. Steen (1990) Geographical synchrony in microtine population cycles: a theoretical evaluation of the role of nomadic avian predators.Oikos 57: 381–387.Google Scholar
  10. Isaaks, E. H. and R. M. Srivastava. (1989)An introduction to applied geostatistics. Oxford University Press, New York.Google Scholar
  11. Ives, W. G. H. (1973) Heat units and outbreaks of the forest tent caterpillar,Malacosoma disstria (Lepidoptera: Lasiocampidae).Canadian Entomologist 105: 529–543.Google Scholar
  12. Kamata, N. and Y. Igarashi (1995) Synchronous population dynamics of the beech caterpillar,quadricalcarifera punctatella (Motschulsky): rainfall is the key. pp. 452–473.In F. Haine, S. M. Salom, W. F. Ravlin, T. Payne and K. F. Raffa (eds.)Population, behavior, population dynamics, and control of forest insects. The Ohio State University, Wooster, Ohio.Google Scholar
  13. Kamata, N. and Y. Takagi (1991) Factors influencing long term population dynamics of a beech caterpillar,Quadricalcarifera punctatella (Motschulsky) (I) Comparison with fluctuating pattern of temperature and precipitation.Transactions of the Annual Meeting of the Tohoku Branch of the Japan Forestry Society 43: 136–138.Google Scholar
  14. Kemp, W. P. (1987) Probability of outbreak for rangeland grasshoppers (Orthoptera:Acrididae) in Montana: Application of Markov principles.Journal of Economic Entomology 80: 1100–1105.Google Scholar
  15. Martinat, P. J. (1987) The role of climatic variation and weather in forest insect outbreaks. pp. 241–268.In P. Barbosa and J. C. Schultz (eds.)Insect outbreaks. Academic Press, San Diego.Google Scholar
  16. May, R. M. (1974) Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos.Science 186: 645–647.PubMedCrossRefGoogle Scholar
  17. Maynard Smith, J. (1974)Models in ecology. Cambridge University Press, Cambridge.Google Scholar
  18. Michaels, P. J. (1984) Climate and the southern pine beetle in Atlantic coastal and piedmont regions.Forest Science 30: 143–156.Google Scholar
  19. Moran, P. A. P. (1953a) The statistical analysis of the Canadian lynx cycle. I. Structure and prediction.Australian Journal of Zoology 1: 163–173.CrossRefGoogle Scholar
  20. Moran, P. A. P. (1953b) The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology.Australian Journal of Zoology 1: 291–298.CrossRefGoogle Scholar
  21. Morris, R. F. (1964) The value of historical data in population research with particular reference toHyphantria cunea Drury.Canadian Entomologist 96: 356–368.Google Scholar
  22. Myers, J. H. (1988) Can a general hypothesis explain population cycles of forest Lepidoptera?Advances in Ecological Research 18: 179–242.CrossRefGoogle Scholar
  23. Myers, J. H. (1990) Population cycles of western tent caterpillars: experimental introductions and synchrony of fluctuations.Ecology 71: 986–995.CrossRefGoogle Scholar
  24. Parzen, E. (1962)Stochastic processes. Holden-Day, Oakland, CA.Google Scholar
  25. Priestly, M. B. (1981)Spectral analysis and time series. Academic Press, Inc., New York.Google Scholar
  26. Royama, T. (1984) Population dynamics of the spruce budwormChoristoneura fumiferana.Ecological Monographs 54: 429–462.CrossRefGoogle Scholar
  27. Royama, T. (1992)Analytical population dynamics. Chapman and Hall, London.Google Scholar
  28. SAS Institute (1992)SAS/STAT user's guide, version 6, fourth edition. SAS Institute, Cary, NC.Google Scholar
  29. Shepherd, R. F., D. D. Bennett., J. W. Dale, S. Tumnock, R. E. Dolph and R. W. Thier (1988) Evidence of synchronized cycles in outbreak patterns of Douglas-fir tussock moth,Orgyia pseudotsugata (McDunnough) (Lepidoptera: Lymantriidae).Memoirs of the Entomological Society of Canada 146: 107–121.Google Scholar
  30. Solow, A. R. (1995) An exploratory analysis of a record of El Niño Events, 1800–1987.Journal of the American Statistical Association 90: 72–77.CrossRefGoogle Scholar
  31. Swetnam, T. W. and A. M. Lynch (1993) Multicentury, regionalscale patterns of western spruce budworm outbreaks.Ecological Monographs 63: 399–424.CrossRefGoogle Scholar
  32. Thomson, A. J., R. F. Shepherd, J. W. E. Harris and R. H. Silversides (1984) Relating weather to outbreaks of western spruce budworm,Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia.Canadian Entomologist 116: 375–381.CrossRefGoogle Scholar
  33. Torii, T. (1956)The stochastic approach in field population ecology. Japan Society for Promotion of Science.Google Scholar
  34. Turchin, P. (1990) Rarity of density dependence or population regulation with lags?Nature 344: 660–663.CrossRefGoogle Scholar
  35. Wallner, W. E. (1987) Factors affecting insect population dynamics: differences between outbreak and non-outbreak species.Annual Review of Entomology 32: 317–340.CrossRefGoogle Scholar
  36. Wellington, W. G. (1957) The synoptic approach to studies of insects and climate.Annual Review of Entomology 2: 143–162.CrossRefGoogle Scholar
  37. Wellington, W. G., J. J. Fettes, K. B. Turner and R. M. Belyea (1950) Physical and biological indicators of the development of outbreaks of the spruce budworm,Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae).Canadian Journal of Research, Section D 28: 308–331.Google Scholar
  38. Williams, D. W. and A. M. Liebhold, (1995) Detection of delayed density dependence in ecological time series: effect of autocorrelation in an exogenous factor.Ecology 76: 1005–1008.CrossRefGoogle Scholar
  39. Yanbe, T. and M. Igarashi (1983) Outbreaks of beech caterpillar and its parasiteCordyceps militalis Link.Forest Pests 32: 115–119. (in Japanese)Google Scholar
  40. Zhou, G. and A. M. Liebhold (1995) Forecasting the spatial dynamics of gypsy moth outbreaks using cellular transition models.Landscape Ecology 10: 177–189.CrossRefGoogle Scholar

Copyright information

© Society of Population Ecology 1996

Authors and Affiliations

  • Andrew Liebhold
    • 1
  • Naoto Kamata
    • 2
  • Thomas Jacob
    • 3
  1. 1.Northeastern Forest Experiment StationUSDA Forest ServiceMorgantownUSA
  2. 2.Forestry and Forest Products Research InstituteTohoku Research CenterIwateJapan
  3. 3.Northeastern Forest Experiment StationUSDA Forest ServiceRadnorUSA

Personalised recommendations