Researches on Population Ecology

, Volume 38, Issue 1, pp 11–17 | Cite as

How is life history variation generated from the genetic resource allocation?

  • Yoshinari Tanaka
Original Paper


A simple quantitative genetic model is proposed to explain the observed genetic correlation structure of a bruchid beetleCallosobruchus chinensis in terms of two underlying variables: the resource acquisition and the resource allocation. Heritabilities and genetic correlations among age-specific, fecundities are regarded as consequences of genetic variations of the two variables. Genetic correlations are predominantly positive in both predictions and observations. Nonetheless, comparison between observed and predicted values in heritabilities, genetic correlations, and genetic principal components suggested significant genetic variances both of the resource allocation and the resource acquisition. The prediction of the model is discussed in relation, to experimental tests of trade-off in life history evolution.

Key words

antagonistic pleiotropy trade-off resource allocation quantitative genetics life history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, G. (1980) The costs of reproduction and their consequence.American Naturalist 116: 45–76.CrossRefGoogle Scholar
  2. Bell, G. (1984a) Measuring the cost of reproduction. I. The correlation structure of the life table of a plankton rotifer.Evolution 38: 300–313.CrossRefGoogle Scholar
  3. Bell, G. (1984b) Measuring the cost, of reproduction. II. The correlation structure of the life tables of five freshwater invertebrates.Evolution 38: 314–326.CrossRefGoogle Scholar
  4. Bell, G. and V. Koufopanou (1986) The cost of reproduction.Oxford Survey of Evolutionary Biology 3: 83–131.Google Scholar
  5. Gadgil, M. and W. Bossert (1970) Life history consequences of natural selection.American Naturalist 104: 1–24.CrossRefGoogle Scholar
  6. Giesel, J. T. (1986) Genetic correlation structure of life history variables in outbred, wildDrosophila melanogaster: effects of photoperiod regimen.American Naturalist 128: 593–603.CrossRefGoogle Scholar
  7. Crow, J. F. and M. J. Simmons (1983) The mutation load inDrosophila.In M. Ashburner, H. L. Carson and J. N. Thompson, Jr. (eds.)The genetics and biology of Drosophila, Vol. 3c. Academic Press, London.Google Scholar
  8. Emlen, J. M. (1970) Age specificity and ecological theory.Ecology 51: 588–601.CrossRefGoogle Scholar
  9. Houle, D. (1991) Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters.Evolution 45: 630–648.CrossRefGoogle Scholar
  10. Houle, D. (1992) Comparing evolvability and variability of quantitative traits.Genetics 130: 195–204.PubMedGoogle Scholar
  11. Houle, D., K. A. Hughes, D. K. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada and B. Charlesworth (1994) The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits.Genetics 138: 773–785.PubMedGoogle Scholar
  12. Keightley P. D. (1989) Models of quantitative variation of flux in metabolic pathways.Genetics 121: 869–876.PubMedGoogle Scholar
  13. Kondrashov, A. S. (1988) Deleterious mutations and the evolution of sexual reproduction.Nature 336: 435–440.PubMedCrossRefGoogle Scholar
  14. Lande, R. (1982) A quantitative genetic theory of life, history evolution.Ecology 63: 607–615.CrossRefGoogle Scholar
  15. Lynch, M. (1985) Spontaneous mutations for life-history characters in an obligate parthenogen.Evolution 39: 804–818.CrossRefGoogle Scholar
  16. Mukai, T., S. I. Chigusa, L. E. Mettler and J. F. Crow (1972) Mutation rate and dominance of genes affecting viability inDrosophila melanogaster.Genetics 72: 335–355.PubMedGoogle Scholar
  17. Nomura, T. and K. Yonezawa (1990) Genetic correlations among life history characteris of adult females in the azuki bean weevil,Callosobruchus chinensis (L) (Coleoptera: Bruchidae).Applied Entomology and Zoology,25: 423–430.Google Scholar
  18. Noordwijk, A. J. Van and G. De Jong. (1986) Acquisition and allocation of resources: their influence on variation in life history tactics.American Naturalist 128: 127–142.CrossRefGoogle Scholar
  19. Roff, D. A. (1992)Evolution of life histories. Chapman & Hall, New York.Google Scholar
  20. Rose, M. (1982) Antagonistic pleiotropy, dominance and genetic variation.Heredity 48: 63–78.Google Scholar
  21. Rose, M. (1983) Theories of life-history evolution.American Zoologist 23: 15–24.Google Scholar
  22. Rose, M. R. (1984) Genetic covariation in Drosophila life history: Untagling the data.American Naturalist 123: 565–569.CrossRefGoogle Scholar
  23. Rose, M. and B. Charlesworth (1981a) Genetics of life history inDrosophila melanogaster. I. Sib analysis of adult females.Genetics 97: 173–186.PubMedGoogle Scholar
  24. Rose, M. and B. Charlesworth (1981b) Genetics of life history inDrosophila melanogaster. II. Exploratory selection experiments.Genetics 97: 187–196.PubMedGoogle Scholar
  25. Service, P. M., E. W. Hutchinson and M. R. Rose (1988) Multiple genetic mechanisms for the evolution of senescence inDrosophila melanogaster.Evolution 42: 708–716.CrossRefGoogle Scholar
  26. Schaffer, W. M. (1974) Optimal reproductive effort in fluctuating environments.American Naturalist 108: 783–790.CrossRefGoogle Scholar
  27. Simmons, M. J. and J. F. Crow (1977) Mutations affecting fitness in Drosophila populations.Annual Review of Genetics 11: 49–78.PubMedCrossRefGoogle Scholar
  28. Stearns, S. C. (1976) Life history tactics: A review of the ideas.Quarterly Review of Biology 51: 3–47.PubMedCrossRefGoogle Scholar
  29. Stearns, S. C. (1977) The evolution of life history traits: A critique of the theory and a review of the data.Annual Review of Ecology and Systematics 8: 145–171.CrossRefGoogle Scholar
  30. Stearns, S. C. (1992)The evolution of life histories. Oxford University Press, Oxford.Google Scholar
  31. Stuart, A. and J. K. Ord (1987)Kendall's advanced theory of statistics. Vol. 1. Charles Griffin, London.Google Scholar
  32. Tanaka, Y. (1990) Age specificity of inbreeding depression during a life cycle, ofCallosobruchus chinensis (Coleoptera: Bruchidae).Researches on Population Ecology 32: 329–335.Google Scholar
  33. Tanaka, Y. (1993) A genetic mechanism for the evolution of senescence inCallosobruchus chinensis (the azuki bean weevil).Heredity 70: 318–321.Google Scholar

Copyright information

© Society of Population Ecology 1996

Authors and Affiliations

  • Yoshinari Tanaka
    • 1
  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations