Skip to main content
Log in

The evolution of dispersal polymorphisms in insects: The influence of habitats, host plants and mates

  • Special Issue Dispersal Polymorphism of Insects: Its Adaptation and Evolution Part 1
  • Published:
Researches on Population Ecology

Abstract

Wing-dimorphic, delphacid planthoppers were used to test hypotheses concerning the effects of habitat persistence and architectural complexity on the occurrence of dispersal. For reasons concerning both the durational stability of the habitat and the reduced availability of mates, selection has favored high levels of dispersal in species occupying temporary habitats. Flightlessness predominates in species occupying persistent habitats, and is promoted by a phenotypic trade-off between reproductive success and flight capability. Wings are retained in tree-inhabiting species, probably for reasons concerning the more effective negotiation of three-dimensional habitats. In contrast, flightlessness is characteristic of those species inhabiting low profile host plants. For several delphacid genera, migratory species are larger than their sedentary congeners. Because body size and fecundity are positively related in planthoppers, the large body size observed in migratory taxa may result from selection for increased fecundity in colonizing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbosa, P., V. Krischik and D. Lance (1989) Life-history traits of forestinhabiting flightless Lepidoptera.Am. Midl. Nat. 122: 262–274.

    Article  Google Scholar 

  • Brown, V. K. (1982) Size and shape as ecological discriminants in successional communities of Heteroptera.Biol. J. Linn. Soc. 18: 279–290.

    Google Scholar 

  • Bull, J. J., C. Thompson, D. Ng and R. Moore (1987) A model for natural selection of genetic migration.Am. Nat. 129: 143–157.

    Article  Google Scholar 

  • Cheng, J., Holt, J. and G. A. Norton (1994) A systems approach to planthopper population dynamics and its contribution to the definition of pest management options. pp. 635–655.In R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. Chapman & Hall, New York.

    Google Scholar 

  • Claridge, M. (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution.Annu. Rev. Entomol. 30: 297–317.

    Article  Google Scholar 

  • Cook, A. and T. J. Perfect (1985) The influence of immigration on population development ofNilaparbata lugens andSogatella furcifera and its interaction with immigration by predators.Crop Protection 4: 423–433.

    Article  Google Scholar 

  • Coyne, J. A. and B. Milstead (1987) Long-distance migration ofDrosophila. 3. Dispersal ofD. melanogaster alleles from a Maryland orchard.Am. Nat. 130: 70–82.

    Article  Google Scholar 

  • den Boer, P. J. (1981) On the survival of populations in a heterogeneous and variable environment.Oecologia 50: 39–53.

    Article  Google Scholar 

  • den Boer, P. J., H. P. T. van Huizen, W. den-Boer Daanje, B. Aukema and C. F. M. den Bieman (1980) Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process (Coleoptera: Carabidae).Entomol. Generalis 6: 107–134.

    Google Scholar 

  • Denno, R. F. (1978) The optimum population strategy for planthoppers (Homoptera: Delphacidae) in stable marsh habitats.Can. Entomol. 110: 135–142.

    Article  Google Scholar 

  • Denno, R. F. (1983) Tracking variable host plants in space and time. pp. 291–341.In R. F. Denno and M. S. McClure (eds.)Variable plants and herbivores in natural and managed systems. Academic Press, New York.

    Google Scholar 

  • Denno, R. F. (1994) Life history variation in planthoppers. pp. 163–215.In R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. (Chapman & Hall, New York.

    Google Scholar 

  • Denno, R. F. and H. Dingle (1981) Consideration for the development of a more general life history theory. pp. 1–6.In R. F. Denno and H. Dingle (eds.)Insect life history patterns: habitat and geographic variation. Springer, New York.

    Google Scholar 

  • Denno, R. F., L. W. Douglass and D. Jacobs (1985) Crowding and host plant nutrition: environmental determinants of wing-form inProkelisia marginata.Ecology 66: 1588–1596.

    Article  Google Scholar 

  • Denno, R. F. and E. E. Grissell (1979) The adaptiveness of wingdimorphism in the salt marsh-inhabiting planthopper,Prokelisia marginata (Homoptera: Delphacidae).Ecology 60: 221–236.

    Article  Google Scholar 

  • Denno, R. F. and E. S. McCloud (1985) Predicting fecundity from body size in the planthopper,Prokelisia marginata (Homoptera: Delphacidae).Environ. Entomol. 14: 846–849.

    Google Scholar 

  • Denno, R. F., K. L. Olmstead and E. S. McCloud (1989) Reproductive cost of flight capability: A comparison of life history traits in wing dimorphic planthoppers.Ecol. Entomol. 14: 31–44.

    Google Scholar 

  • Denno, R. F., M. J. Raupp and D. W. Tallamy (1981) Organization of a guild of sap-feeding insects: Equilibrium vs. nonequilibrium coexistence. pp. 151–181.In R. F. Denno and H. Dingle (eds.)Insect life history patterns: habitat and geographic variation. Springer, New York.

    Google Scholar 

  • Denno, R. F. and G. K. Roderick (1990) Population biology of planthoppers.Annu. Rev. Entomol. 35: 489–520.

    Article  Google Scholar 

  • Denno, R. F. and G. K. Roderick (1992) Density-related dispersal in planthoppers: Effects of interspecific crowding.Ecology 73: 1323–1334.

    Article  Google Scholar 

  • Denno, R. F., G. K. Roderick, K. L. Olmstead and H. G. Döbel (1991) Density-related migration in planthoppers (Homoptera: Delphacidae): The role of habitat persistence.Am. Nat. 138: 1513–1541.

    Article  Google Scholar 

  • Dingle, H. (1985) Migration. pp. 375–415.In G. A. Kerkut and L. I. Gilbert (eds.)Comprehensive insect physiology, biochemistry and pharmacology, Vol. 9, Behavior, Pergamon Press, New York.

    Google Scholar 

  • Fairbairn, D. J. and T. C. Butler (1990) Correlated traits for migration in the Gerridae (Hemiptera, Heteroptera): A field test.Ecol. Entomol. 15: 131–142.

    Google Scholar 

  • Giffard, W. M. (1922) The distribution and island endemism of Hawaiian Delphacidae (Homoptera) with additional lists of their food plants.Proc. Hawaiian Entomol. Soc. 1: 103–118.

    Google Scholar 

  • Harrison, R. G. (1980) Dispersal polymorphisms in insects.Annu. Rev. Ecol. Syst. 11: 95–118.

    Article  Google Scholar 

  • Hastings, A. (1982) Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates.J. Math. Biol. 16: 49–56.

    Google Scholar 

  • Heady, S. E. and R. F. Denno (1991) Reproductive isolation inProkelisia planthoppers: Acoustical differentiation and hybridization failure.J. Insect Behavior 4: 367–390.

    Article  Google Scholar 

  • Ichikawa, T. (1977) Sexual communications in planthoppers. pp. 84–94.In The rice brown planthopper. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei.

    Google Scholar 

  • Ichikawa, T. (1982) Density-related changes in male-male competitive behavior in the rice brown planthopper,Nilaparbata lugens (Stål) (Homoptera: Delphacidae).Appl. Entomol. Zool. 17: 439–452.

    Google Scholar 

  • Ichikawa, T., M. Sakuna and S. Ishii (1975) Substrate vibrations: Mating signal of three species of planthoppers which attack the rice plant (Homoptera: Delphacidae).Appl. Entomol. Zool. 10: 162–171.

    Google Scholar 

  • Iwanaga, K. and S. Tojo (1986) Effects of juvenile hormone and rearing density on wing dimorphism and oöcyte development in the brown planthopper,Nilaparvata lugens.J. Insect Physiol. 32: 585–590.

    Article  CAS  Google Scholar 

  • Iwanaga, K. and S. Tojo (1988) Comparative studies on the sensitivities to nymphal density, photoperiod and rice plant stage in two strains of the brown planthopper,Nilaparvata lugens (Stål) (Homoptera: Delphacidae).Jpn. J. Appl. Entomol. Zool. 32: 68–74.

    Google Scholar 

  • Iwanaga, K., F. Nakasuji and S. Tojo (1987) Wing dimorphism in Japanese and foreign strains of the brown planthopper,Nilaparvata lugens.Entomol. Exp. Appl. 43: 3–10.

    Article  Google Scholar 

  • Kisimoto, R. (1965) Studies on the polymorphism and its role playing in the population growth of the brown planthopper,Nilaparvata lugens Stål.Bull. Shikoku Agric. Exp. Sta. 13: 1–106.

    Google Scholar 

  • Kisimoto, R. (1976) Synoptic weather conditions inducing longdistance immigration of planthoppers,Sogatella furcifera Horvath andNilaparvata lugens Stål.Ecol. Entomol. 1: 95–109.

    Google Scholar 

  • Kisimoto, R. and L. J. Rosenberg (1994) Long-distance migration in delphacid planthoppers. pp. 302–322.In. R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. Chapman & Hall, New York.

    Google Scholar 

  • Kuno, E. (1979) Ecology of the brown planthopper in temperate regions. pp. 45–60.In Brown planthopper: threat to rice production in Asia. International Rice Research Institute. Los Baños.

    Google Scholar 

  • Kuno, E. (1981) Dispersal and the persistence of populations in unstable habitats: a theoretical note.Oecologia 49: 123–126.

    Article  Google Scholar 

  • New, T. R. (1974) Psocoptera.Royal Entomological Society handbooks for the identification of British insects, Part 7. 102pp.

  • Raatikainen, M. and A. Vasarainen (1976) Composition, zonation and origin of the leafhopper fauna of oatfields in Finland.Ann. Zool. Fennici 13: 1–24.

    Google Scholar 

  • Reddingius, J. and P. J. den Boer (1970) Simulation experiments illustrating stabilization of animal numbers by spreading the risk.Oecologia 5: 240–284.

    Article  Google Scholar 

  • Reuter, O. M. (1875) Remarques sur le polymorphisme des hemipteres.Ann. Soc. Entomol. France 5: 225–236.

    Google Scholar 

  • Roderick, G. K. (1987)Ecology and evolution of dispersal in California populations of a salt marsh insect, Prokelisia marginata. Ph. D. Dissertation. University of California, Berkeley, California.

    Google Scholar 

  • Roff, D. A. (1974) Spatial heterogeneity and the persistence of populations.Oecologia 15: 245–258.

    Article  Google Scholar 

  • Roff, D. A. (1984) The cost of being able to fly: A study of wing polymorphism in two species of crickets.Oecologia 63: 30–37.

    Article  Google Scholar 

  • Roff, D. A. (1986) The evolution of wing dimorphism in insects.Evolution 40: 1009–1020.

    Article  Google Scholar 

  • Roff, D. A. (1990) The evolution of flightlessness in insects.Ecol. Monogr. 60: 389–421.

    Article  Google Scholar 

  • Roff, D. A. (1991) Life history consequences of bioenergetic and biochemical constraints on migration.Amer. Zool. 31: 205–215.

    Google Scholar 

  • Roff, D. A. and D. J. Fairbairn (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta.Amer. Zool. 31: 243–251.

    Google Scholar 

  • Solbreck, C. (1978) Migration, diapause, and direct development as alternative life histories in a seed bug,Neacoryphus bicrucis., pp. 195–217.In H. Dingle (ed.)The evolution of insect migration and diapause. Springer, New York.

    Google Scholar 

  • Southwood, T. R. E. (1962) Migration of terrestrial arthropods in relation to habitat.Biol. Rev. 37: 171–214.

    Google Scholar 

  • Southwood, T. R. E. (1977) Habitat, the templet for ecological strategies.J. Anim. Ecol. 46: 337–365.

    Google Scholar 

  • Southwood, T. R. E. and D. Leston (1959)Land and water bugs of the British Isles. F. Warne. London.

    Google Scholar 

  • Tallamy, D. W. and R. F. Denno (1981) Alternative life history patterns in risky environments: an example from lacebugs. pp. 129–147.In R. F. Denno and H. Dingle (eds.)Insect life history patterns: habitat and geographic variation. Springer, New York.

    Google Scholar 

  • Taylor, C. E., J. R. Powell, V. Kekic, M. Andjelkovic and H. Burla (1984) Dispersal rates of species of theDrosophila obscura group: Implications for population structure.Evolution 38: 1397–1401.

    Article  Google Scholar 

  • Vepsäläinen, K. (1978) Wing dimorphism and diapause inGerris: determination and adaptive significance. pp. 218–253.In H. Dingle (ed.)Evolution of insect migration and diapause. Springer, Berlin.

    Google Scholar 

  • Wagner, W. L., D. R. Herbst and S. H. Sohmer (1990)Manual of the flowering plants of Hawaii. Vol. 1 and 2. Bishop Museum Special Publication 83. University of Hawaii Press and Bishop Museum Press. Honolulu.

    Google Scholar 

  • Waloff, N. (1973) Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera).J. Appl. Ecol. 10: 705–730.

    Article  Google Scholar 

  • Waloff, N. (1983) Absence of wing polymorphism in the arboreal, phytophagous species of some taxa of temperate Hemiptera: An hypothesis.Ecol. Entomol. 8: 229–232.

    Google Scholar 

  • Wilson, S. W., C. Mitter, R. F. Denno and M. R. Wilson (1994) Evolutionary patterns of host plant use by delphacid planthoppers and their relatives. pp. 7–113.In R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. Chapman & Hall, New York.

    Google Scholar 

  • Zimmerman, E. C. (1948)Insects of Hawaii, Volume 4, Homoptera: Auchenorrhyncha. University of Hawaii Press, Honolulu.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denno, R.F. The evolution of dispersal polymorphisms in insects: The influence of habitats, host plants and mates. Res Popul Ecol 36, 127–135 (1994). https://doi.org/10.1007/BF02514927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02514927

Key words

Navigation