Il Nuovo Cimento C

, Volume 9, Issue 2, pp 459–468 | Cite as

Evicence for a nonvanishing energy density of the vacuum (or cosmological constant)?

  • H. V. Klapdor
  • K. Grotz
Article

Summary

The progress in our understanding of nuclear β-decay far from stability in recent years had led—as a consequence of the better understanding of the synthesis of heavy elements by ther-process—to a new age of the Universe (from the actinide cosmochronometers) of ≳17·109 years. It is discussed in this paper that with the assumption of inflationary expansion at the «beginning» of the evolution of the Universe this new number leads to a nonvanishing cosmological constant Λ=(4.7÷19)·10−57cm−2 in the Friedmann equation and to an energy density of the vacuum of\(\rho _v = \left( {2.5 \div 10} \right) \cdot 10^{ - 30} g cm^{ - 3} \). An upper limit for the mass of the neutrino and of the amount of dark matter in the Universe is deduced.

PACS. 94.40

Cosmic rays 

Riassunto

Il progresso nella nostra comprensione del decadimento β nucleare lontano dalla stabilità in anni recenti ha portato—come conseguenza della migliore comprensione della sintesi degli elementi pesanti mediante in processor—a formulare una nuova età dell'universo (dai cosmocronometri degli attinidi), di 17·109 anni. Si discute in questo lavoro che con l'assunto di espansione inflazionaria all' «inizio» dell'evoluzione dell'Universo questo nuovo numero porta ad una costante cosmologica che non si annulla Λ=(4.7÷19)·10−57 cm−2 nell'equazione di Friedmann e ad una densità d'energia del vuoto di\(\rho _v = \left( {2.5 \div 10} \right) \cdot 10^{ - 30} g cm^{ - 3} \). Si deduce un limite superiore per la massa del neutrino e la quantità di materia scura nell'Universo.

Резюме

Прогресс в понимании ядерного β-распада в последние годы привел к лучшему пониманию синтеза тяжелых элементов и к новому возрасту Вселенной≳17·109 лет. В этой статье отмечается, что это новое значение возраста Вселенной приводит к нулевой космологической постоянной Λ=(4.7÷19)·10−57 см−2 в уравнении фридмана и к плотности энергии вакуума\(\rho _v = \left( {2.5 \div 10} \right) \cdot 10^{ - 30} \Gamma CM^{ - 3} \). Выводится верхний предел для массы нейтрино.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. Baum:Phys. Lett. B,133, 185 (1983).MathSciNetCrossRefADSGoogle Scholar
  2. (2).
    S. W. Hawking:Phys. Lett. B,134, 403 (1984).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    M. Henneaux andC. Teitelboim:Phys. Lett. B,143, 415 (1984).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    See, for example,Ch. W. Misner, K. S. Thorne andJ. A. Wheeler: inGravitation (Freeman, San Francisco, Cal., 1973).Google Scholar
  5. (5).
    Ya. B. Zel'Dovich:Usp. Fiz. Nauk.,95, 209 (1968).Google Scholar
  6. (6).
    A. D. Linde:Phys. Lett. B.,108, 389 (1982).MathSciNetCrossRefADSGoogle Scholar
  7. (7).
    P. Langacker:Phys. Rep.,72, 185 (1981).CrossRefADSGoogle Scholar
  8. (8).
    H. J. Blome andW. Priester:Naturwissenschaften,71, 456, 515, 528 (1984).CrossRefGoogle Scholar
  9. (9).
    S. A. Bludman andM. A. Ruderman:Phys. Rev. Lett.,38, 255 (1977).CrossRefADSGoogle Scholar
  10. (10).
    H. V. Klapdor:Fortschr. Phys.,35, 1 (1985);Prog. Part. Nucl. Phys.,10, 131 (1983).Google Scholar
  11. (11).
    H. V. Klapdor, J. Metzinger andT. Oda:At. Data Nucl. Data Tables,31, 81 (1984).CrossRefADSGoogle Scholar
  12. (12).
    F. K. Thielemann, J. Metzinger andH. V. Klapdor:Z. Phys. A,309, 301 (1983);Astron. Astrophys.,123, 162 (1983).CrossRefGoogle Scholar
  13. (13).
    H. V. Klapdor:Sterne and Weltraum,3, 132 (1985).ADSGoogle Scholar
  14. (14).
    W. A. Fowler:Proceedings of the Welch Foundation Conferences on Chemical Research, XXI, Cosmochemistry, edited byW. D. Milligan (Houston, Tex., 1977), p. 61;W. A. Fowler andC. C. Meisl: preprint OAP-660, Caltech, March 1985.Google Scholar
  15. (15).
    A. Sandage:Astrophys. J.,252, 553 (1982).CrossRefADSGoogle Scholar
  16. (16).
    P. E. Nissen:ESO Messenger,28, 4 (1982).ADSGoogle Scholar
  17. (17).
    P. J. E. Peebles:Astrophys. J.,284, 439 (1984).CrossRefADSGoogle Scholar
  18. (18).
    M. S. Turner, S. Steigman andL. M. Krauss:Phys. Rev. Lett.,52, 2090 (1984)CrossRefADSGoogle Scholar
  19. (19).
    A. Sandage andG. A. Tammann:Nature (London),307, 326 (1984);Astrophys. J.,256, 339 (1982).CrossRefADSGoogle Scholar
  20. (20).
    S. van den Berg:Nature (London),299, 297 (1982).CrossRefADSGoogle Scholar
  21. (21).
    J. Ehlers:Mitt. Astron. Ges.,38, 41 (1976).ADSGoogle Scholar
  22. (22).
    G. A. Tammann:Cosmology, Landolt-Börnstein VI/2c (Springer, Berlin, 1982).Google Scholar
  23. (23).
    K. Grotz andH. V. Klapdor:Phys. Lett. B,153, 1 (1985);157, 242 (1985).CrossRefADSGoogle Scholar
  24. (24).
    K. Grotz andH. V. Klapdor: is this issue, p. 535.Google Scholar
  25. (25).
    H. H. Fliche andJ. M. Souriau:Astron. Astrophys.,78, 87 (1979).ADSGoogle Scholar
  26. (26).
    H. H. Fliche, J. M. Souriau andR. Triay:Astron. Astrophys.,108, 256 (1982)ADSGoogle Scholar

Copyright information

© Marzo-Aprile 1986

Authors and Affiliations

  • H. V. Klapdor
    • 1
  • K. Grotz
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergB.R.D.

Personalised recommendations