Advertisement

Russian Physics Journal

, Volume 41, Issue 12, pp 1180–1187 | Cite as

Temperature profile and depth of surface melting of a metal irradiated by a high-current ion beam

  • E. A. Airyan
  • S. I. Bastrukov
  • M. S. Kaschiev
  • S. A. Korenev
  • D. V. Podgainyi
  • I. V. Puzynin
  • A. V. Fedorov
  • A. M. Chervyakov
Solid State Physics

Abstract

We have numerically solved the nonlinear thermal conductivity equation using temperature-dependent thermal coefficients to study the evolution of the temperature profile produced in a metal irradiated by a high-current ion beam. We studied the propagation of the thermal front and the heating rate of the metal surface as functions of ion beam characteristics. We determined the dependence of the maximum heating temperature and penetration depth on the maximum value of the ion beam current.

Keywords

Surface Melting Melting Depth Thermal Conduction Equation Maximum Heating Temperature Maximum Heat Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. M. Bystritskii and A. N. Didenko,High-Power Ion Beams [in Russian], Énergoizdat, Moscow (1984).Google Scholar
  2. 2.
    A. N. Didenko, A. E. Ligachev, and I. B. Kurakin,Interaction of Charged Particle Beams with Surfaces of Metals and Alloys [in Russian], Énergoizdat, Moscow (1987).Google Scholar
  3. 3.
    V. I. Boiko and V. V. Evstigneev,Introduction to the Physics of Interactions of High-Current Charged Particle Beams with Matter [in Russian], Énergoizdat, Moscow (1987).Google Scholar
  4. 4.
    S. A. Korenev and A. Perty, Preprint OIYaI No. E18-95-520, OIYaI, Dubna (1995).Google Scholar
  5. 5.
    I. K. Kikoina (editor),Tables of Physical Constants [in Russian], Moscow (1976).Google Scholar
  6. 6.
    A. A. Samarskii,Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    Ya. B. Zel'dovich and Yu. P. Raizer,Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  8. 8.
    G. Carslaw and D. Yeager,Thermal Conductivity of Solids [Russian translation], Nauka, Moscow (1964).Google Scholar
  9. 9.
    N. M. Belyaev and A. A. Ryadno,Methods of the Theory of Thermal Conduction [in Russian], Vysshaya Shkola, Moscow (1982). Vols. 1 and 2.Google Scholar
  10. 10.
    V. I. Mazhurkin and A. A. Samokhin, in: A. A. Samarskii, S. P. Kurdyumov, and V. I. Mazhukin (editors),Mathematical Modeling [in Russian], Nauka, Moscow (1987).Google Scholar
  11. 11.
    R. Rastov, Y. Maron, and J. Mayer,Phys. Rev. B,31, 893 (1985).CrossRefADSGoogle Scholar
  12. 12.
    H. A. Davis, et al, Annual Report of Los Alamos National Laboratory (1995).Google Scholar
  13. 13.
    R. G. Stinnet, et al.,Proc. Materials Research Society Symp. on “Materials Synthesis and Processing Using Ion Beams”, Boston (1994), Vol. 136, p. 521.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. A. Airyan
  • S. I. Bastrukov
  • M. S. Kaschiev
  • S. A. Korenev
  • D. V. Podgainyi
  • I. V. Puzynin
  • A. V. Fedorov
  • A. M. Chervyakov

There are no affiliations available

Personalised recommendations