Advertisement

Journal of Radioanalytical Chemistry

, Volume 55, Issue 2, pp 271–281 | Cite as

Neutron activation analysis for provenance studies of archaeological artifacts

  • F. Widemann
Article

Abstract

Differences in composition of archaeological artifacts may only in distinct cases be interpreted in terms of provenance differences. This point is discussed with examples: the large number of elements analyzed with precision and the relative lack of sensitivity of many of them to the presence of crystalline inclusions, made of NAA the method most commonly used for provenance studies of ceramics.

Keywords

Neutron Activation Analysis Amphora Crystalline Inclusion Provenance Study Archaeological Artifact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. ROUSE, American Antiquity, 25 (1960) 313.CrossRefGoogle Scholar
  2. 2.
    K. GRUEL, Eutde typologique et analytique du trésor de Trébry, Thèse de 3ème cycle, Université Paris IV, 1979, p. 91. (to be published).Google Scholar
  3. 3.
    H. Mc KERREL, R. P. K. STEVENSON, in Methods of Chemical and Metallurgical Investigation of Ancient Coinage, E. D. HALL, D. M. METCALF (Eds), London, 1972, pp. 195–209.Google Scholar
  4. 4.
    F. WIDEMANN, F. LAUBENHEIMER, M. ATTAS, P. FONTES, K. GRUEL, J. LEBLANC, J. LLERES, Archaeophysika (Bonn), 10 (1978) 317.Google Scholar
  5. 5.
    F. WIDEMANN, Latomus, 160 (1979) 47.Google Scholar
  6. 6.
    F. WIDEMANN, F. LAUBENHEIMER, P. FONTES, J. LEBLANC, 19th Int. Symp. on Archaeometry and Archaeological Prospection, London, 1979. (to be published).Google Scholar
  7. 7.
    G. HARBOTTLE, Radiochemistry, 3 (1977) 33.Google Scholar
  8. 8.
    A. A. GORDUS, in Science and Archaeology, R. H. BRILL (Ed.), 1971, pp. 145–155.Google Scholar
  9. 9.
    I. L. BARNES, W. R. SHIELDS, T. J. MURPHY, R. H. BRILL, in Archaeological Chemistry, C. W. BECK (Ed.), Advances in chemistry series 138. Amer. Chem. Soc., 1974, pp. 1–10.Google Scholar
  10. 10.
    N. H. GALE, Archaeophysika (Bonn), 10 (1978) 194.Google Scholar
  11. 11.
    H. CRAIG, V. CRAIG, Science, 176 (1972) 401.CrossRefGoogle Scholar
  12. 12.
    T. BERTHOUD, Application de la spectrométrie de masse à étincelles à l'analyse d'objets de cuivre anciens, Thèse de 3ème cycle, Université paris VI, 1977.Google Scholar
  13. 13.
    I. PERLMAN, F. ASARO, Archaeometry, (1969) 21; F. WIDEMANN, M. PICON, F. ASARO, H. V. MICHEL, I. PERLMAN, Archaeometry, 17 (1975) 45; J. YELLIN, I. PERLMAN, F. ASARO, H. V. MICHEL, D. F. MOSIER, Neutron Activation Analysis of Complex Mixtures. An Interlaboratory Study. Preprint HUAL 3, 1977.Google Scholar
  14. 14.
    J. AUDOUZE, La nucléosynthèse des éléments chimiques dans les étoiles. Sciences, Progrès, Découverte, Paris, mars—avril 1969.Google Scholar
  15. 15.
    D. FILLIERES, Contribution à l'étude de la production et de l'exportation des amphores dites marseillaises et des céramiques grecques d'occident du Midi de la France au moyen d'analyses par activation neutronique avec traitement taxinomique des résultats, Thèse de 3ème cycle, Université Paris I, 1978; D. FILLIERES, M. PY, Archaeometry, (to be published).Google Scholar
  16. 16.
    M. ATTAS, L. YAFFE, J. M. FOSSEY, Archaeometry, 19 (1977) 33.Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • F. Widemann
    • 1
  1. 1.Groupe d'Archéologie Nucléaire d'Orsay-Saclay, Laboratoire Pierre SüeC.E.N. SaclayGif-Sur-Yvette(France)

Personalised recommendations