Skip to main content
Log in

Average cross-sections for (n, α) and (n, p) reactions on titanium in a fission-type reactor spectrum

  • Physical Methods Section
  • Published:
Journal of Radioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The average cross-section in a fission-type reactor spectrum was determined experimentally for the reactions:46Ti(n,p)46Sc,47Ti(n,p)47Sc,48Ti(n,p)48Ti(n,α)45Ca and50Ti(n,α)47Ca. In order to obtain the (n,p) cross-sections, reactor irradiation of titanium was followed by measurement of the induced scandium activities with a Ge(Li) detector of calibrated detection efficiency. For this no chemical separations had to be carried out. For the (n,α) reactions, however, the induced calcium activities were separeted and purified by oxalate precipitation, after the bulk of the radioactivity had been removed by precipitation of titanium hydroxide. The47Ca disintegration rate was determined in the same way as for the scandium isotopes, whereas for45Ca liquid scintillation counting was carried out. The shape of the reactor spectrum was investigated by irradiating reference threshold detectors with different effective threshold energies. To correct for (n,γ) interferences, irradiations were carried out with and without cadmium shielding. On the basis of\(\bar \sigma _F = 0.64\) mb for the reaction27Al(n,α)24Na, the average cross-sections were as follows:46Ti(n,p)46Sc:10.5±0.4 mb;47Ti(n,p)47Sc: 16.3±0.6 mb;48Ti(n,p)48Sc:0.272±0.005 mb;48Ti(n,α)45Ca: 34μb;50Ti(n,α)47Ca: 8.1±0.3 μb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Zijp, RCN Report 37, 1965.

  2. Neutron Fluence Measurements. Technical Reports Series No. 107, IAEA, Vienna, 1970.

  3. Standard Method for Measuring Neutron Flux by Radioactivation Techniques. ASTM E 261-70.

  4. W. L. Zijp, Proc. IAEA Symp. on Neutron Dosimetry, Vol. 1, IAEA, Vienna, 1963, p. 589.

    Google Scholar 

  5. W. Köhler, Nukleonik, 8 (1966) 9.

    Google Scholar 

  6. R. A. Greig, S. J. Bone, R. E. J. Porrit, AAEC/TM 550, 1970.

  7. C. E. Mellish, J. A. Payne, R. L. Otlet, AERE I/R 2630, 1958.

  8. R. C. Jung, H. M. Epstein, J. Chastain, BMI-1486, 1960.

  9. J. C. Roy, J. J. Hawton, AECL-1181 (CRC-1003) 1960.

  10. R. W. Durham, M. P. Navalkar, E. Ricci, AECL 1434, 1962.

  11. S. Niese, P. Morzek, C. Herold, Kernenergie, 6 (1963) 37.

    CAS  Google Scholar 

  12. C. H. Hogg, L. D. Weber, Chapter “Fast neutron dosimetry at the MTR-ETR site” in Symp. on Radiation Effects on Metals and Neutron Dosimetry, ASTM Spec. Techn. Publ. No. 341, 1963.

  13. R. Nilsson, Reactor Sci. Techn., 17 (1963) 279.

    CAS  Google Scholar 

  14. D. M. Clare, W. H. Martin, B. T. Kelly, Nucl. Sci. Eng., 18 (1964) 448.

    CAS  Google Scholar 

  15. J. W. Boldeman, J. Nucl. Energy, Parts A/B 18 (1964) 417.

    Google Scholar 

  16. R. Lloret, EANDC (E) 57 “U” (1965) 172.

  17. A. Fabry, J. P. Deworm, EANDC (E) 57 “U” (1965) 69.

  18. A. M. Bresesti, M. Bresesti, R. A. Rydin. Nucl. Sci. Eng., 29 (1967) 7.

    CAS  Google Scholar 

  19. M. Deschuyter, J. Hoste, Radiochim. Acta, 7 (1967) 198.

    CAS  Google Scholar 

  20. M. S. Son et al., Korean Phys. Soc., 1 (1968) 51.

    Google Scholar 

  21. F. Nasyrov, B. D. Stsiborskii, Dokl. Akad. Nauk SSSR, 180 (1968) 836.

    CAS  Google Scholar 

  22. F. Nasyrov, At. Energ. (USSR) 25 (1968) 437.

    CAS  Google Scholar 

  23. R. P. Schuman, D. K. Oestreich, WASH-1136, (1969) p. 55.

  24. I. Kimura, K. Kobayashi, T. Shibata, J. Nucl. Sci. Technol., 8 (1971) 59.

    Article  CAS  Google Scholar 

  25. J. D. Jenkins, F. B. Kam, Trans. Amer. Nucl. Soc., 14 (1971) 381.

    Google Scholar 

  26. S. Pearlstein, J. Nucl. Energy, 27 (1973) 81.

    Article  CAS  Google Scholar 

  27. Cinda 72 and supplement, IAEA, Vienna, 1972.

  28. R. Neirinckx, F. Adams, J. Hoste, Anal. Chim. Acta, 46 (1969) 165.

    Article  CAS  Google Scholar 

  29. R. Neirinckx, F. Adams, J. Hoste, Anal. Chim. Acta, 48 (1969) 1.

    Article  CAS  Google Scholar 

  30. N. E. Holden, F. W. Walker, Chart of the Nuclides, 11th ed., General Electric Co., 1972.

  31. R. Van der Linden, F. De Corte, P. Van den Winkel, J. Hoste, J. Radioanal. Chem., 11 (1972) 133.

    Google Scholar 

  32. R. Van der Linden, private communication.

  33. A. Bruggeman, unpublished results.

  34. Nuclear Data Sheets, National Research Council, Washington D. C.

  35. C. M. Lederer, J. M. Hollander, I. Perlman, Table of Isotopes, 6th ed., Wiley, New York, 1967.

    Google Scholar 

  36. T. E. Ward, P. K. Kuroda, Radiochim. Acta, 12 (1969) 217.

    CAS  Google Scholar 

  37. E. K. Warburton, D. E. Alburger, G. A. P. Engelbertink, Phys. Rev., C 2 (1970) 1427.

    Article  Google Scholar 

  38. J. Op de Beeck, A. Speecke, J. Hoste, Radiochim. Acta, 4 (1965) 32.

    Google Scholar 

  39. R. De Neve, D. De Soete, J. Hoste, Radiochim. Acta, 5 (1966), 188.

    Google Scholar 

  40. R. Beaugé, Proc. IAEA Symp. on Neutron Dosimetry, Vol. 2, IAEA, Vienna, 1963, p. 3.

    Google Scholar 

  41. J. P. François, Thesis, Ghent University, 1971.

  42. J. P. François, R. Gijbels, J. Hoste, J. Inorg. Nucl. Chem., 35 (1973) 381.

    Article  Google Scholar 

  43. P. M. Endt, C. Vander Leun, Nucl. Phys., A 105 (1967) 1.

    Article  Google Scholar 

  44. J. Op de Beeck, to be published.

  45. J. M. Freeman, J. G. Jenkin, Nucl. Instr. Methods, 43 (1966) 269.

    CAS  Google Scholar 

  46. L. J. Jardine, Nucl. Instr. Methods, 96 (1971) 259.

    Article  CAS  Google Scholar 

  47. G. Aubin, J. Barrette, M. Barrette, S. Monaro, Nucl. Instr. Methods, 76 (1969) 93.

    Article  CAS  Google Scholar 

  48. R. J. Gehrke, J. E. Cline, R. L. Heath, Nucl. Instr. Methods, 91 (1971) 349.

    Article  CAS  Google Scholar 

  49. Y. Gurfinkel, A. Notea, Nucl. Instr. Methods, 57 (1967) 173.

    Article  CAS  Google Scholar 

  50. D. P. Donnelly, H. W. Baer, J. J. Reidy, M. L. Wiedenbeck, Nucl. Instr. Methods. 57 (1967) 219.

    Article  CAS  Google Scholar 

  51. J. E. Brown, E. N. Hatch, Nucl. Instr. Methods, 47 (1967) 185.

    Article  CAS  Google Scholar 

  52. G. E. Keller, E. F. Zganjar, Nucl. Phys., A 147 (1970) 527.

    Article  CAS  Google Scholar 

  53. J. Legrand, J. Morel, C. Clément, Nucl. Phys., A 142 (1970) 63.

    Article  CAS  Google Scholar 

  54. F. Adams, R. Dams, J. Radioanal. Chem., 3 (1969) 99.

    CAS  Google Scholar 

  55. S. Fine, C. F. Hendee, Nucleonics, 13 (1955) 36.

    CAS  Google Scholar 

  56. Standard Method for Measuring Fast-Neutron Flux by Radioactivation of Aluminium, ASTM E 266-70.

  57. Standard Method for Measuring Fast-Neutron Flux by Radioactivation of Iron, ASTM E 263-70.

  58. C. L. Lewis, W. L. Ott, Analytical Chemistry of Nickel, Pergamon, Oxford, 1970.

    Google Scholar 

  59. M. Codell, Analytical Chemistry of Titanium Metals and Compounds, Interscience, New York, 1959.

    Google Scholar 

  60. W. Maenhaut, F. Adams, J. Hoste, J. Radioanal. Chem. (in the press).

  61. F. De Corte, A. Speecke, J. Hoste, J. Radioanal. Chem., 3 (1969) 205.

    Google Scholar 

  62. R. Van der Linden, F. De Corte, J. Hoste, J. Radioanal. Chem., 13 (1973) 169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruggeman, A., Maenhaut, W., François, J.P. et al. Average cross-sections for (n, α) and (n, p) reactions on titanium in a fission-type reactor spectrum. J. Radioanal. Chem. 23, 131–146 (1974). https://doi.org/10.1007/BF02514352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02514352

Keywords

Navigation