Advertisement

Journal of Radioanalytical Chemistry

, Volume 16, Issue 2, pp 375–383 | Cite as

On the determination of sulfur by charged particle activation analysis

  • S. A. Dabney
  • D. L. Swindle
  • J. N. Beck
  • G. Francis
  • E. A. Schweikert
Charged Particles Activation

Abstract

An analytical method is described for the determination of trace amounts of sulfur by charged particle activation analysis. The method consists of proton irradiation followed by a rapid radiochemical separation of the product nuclide,34m Cl. This procedure has been applied to a number of pure metal samples which range in sulfur content from 0.3 to 30 ppm. All analyses were repeated several times to ensure consistent results and to better evaluate experimental detection limits and systematic errors. The results indicate that sulfur determinations can be performed at a concentration of less than 1.0 ppm. Activation curves are presented for the reactions S(d,x)34mCl, S(p,x)34mCl, and the interfering reaction35Cl(p, pn)34mCl.

Keywords

Sulfur Content Activation Curve Proton Irradiation Reaction 35C1 Charged Particle Activation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Albert, J. Blouri, Ch. Cleyrergue, N. Deschamps, J. LeHericy, J. Radional. Chem., 1 (1968) 297.Google Scholar
  2. 2.
    Ph. Albert, J. Blouri, Ch. Cleyrergue, N. Deschamps, J. LeHericy, J. Radioanal. Chem. 1 (1968) 389.Google Scholar
  3. 3.
    Ph. Albert, J. Blouri, Ch. Cleyrergue, N. Deschamps, J. LeHericy, J. Radioanal. Chem., 1 (1968) 431.Google Scholar
  4. 4.
    G. T. Seaborg, J. J. Livingood, J. Am. Chem. Soc., 60 (1938) 1784.CrossRefGoogle Scholar
  5. 5.
    P. Sue, Ph. Albert, C. R. Acad. Sci. Paris, C242 (1956) 2461.Google Scholar
  6. 6.
    E. A. Schweikert, Ph. Albert, Intern. Rep. CECM, CRNS, December, 1964.Google Scholar
  7. 7.
    J. L. Debrun, J. N. Barrandon, Ph. Albert, Proc. of Intern. Conf. on Modern Trends in Activation Analysis, Gaithersburg, Md., October 7–11, 1968, p. 774.Google Scholar
  8. 8.
    J. L. Debrun, Ph. Albert, Bull. Soc. Chim. France, 201C 3 (1969) 1017.Google Scholar
  9. 9.
    T. D. Burton, D. L. Swindle, E. A. Schweikert, J. Radiochem. Radioanal. Lett., 13 (1973) 191.Google Scholar
  10. 10.
    J. P. Thomas, E. A. Schweikert, Nucl. Instr. Methods, 99 (1972) 461.CrossRefGoogle Scholar
  11. 11.
    H. L. Rook, E. A. Schweikert, Anal. Chem., 41 (1969) 958.CrossRefGoogle Scholar
  12. 12.
    H. L. Rook, E. A. Schweikert, R. E. Wainerdi, Anal. Chem., 40 (1968) 1194.CrossRefGoogle Scholar
  13. 13.
    B. T. Kenna, P. K. Kuroda, J. Inorg. Nucl. Chem., 16 (1960) 1.CrossRefGoogle Scholar
  14. 14.
    J. B. Cumming, Proc. Gatlingsburg Symp., 1962 and BNL Report 6470.Google Scholar
  15. 15.
    H. P. Yule, Nucl. Phys., A94 (1967) 442.CrossRefGoogle Scholar
  16. 16.
    J. L. Debrun, J. N. Barrandon, Ph. Albert, Ann. Chim., 5 (1970) 357.Google Scholar
  17. 17.
    G. Revel, Centre d'Etudes de Chimie Metallurgique, Vitry, France, personal communication, 1972.Google Scholar

Copyright information

© Akadémiai Kiadó 1973

Authors and Affiliations

  • S. A. Dabney
    • 1
  • D. L. Swindle
    • 1
  • J. N. Beck
    • 1
  • G. Francis
    • 1
  • E. A. Schweikert
    • 1
  1. 1.Activation Analysis Research Laboratory and Chemistry DepartmentTexas A and M UniversityCollege Station(USA)

Personalised recommendations