Optimal discretization of Ill-posed problems

  • S. V. Pereverzev
  • S. G. Solodkii
Article

Abstract

We present a survey of results on the optimal discretization of ill-posed problems obtained in the Institute of Mathematics of the Ukrainian National Academy of Sciences.

Keywords

Projective Method Optimal Order Discretization Scheme Optimal Discretization Normal Solution 

References

  1. 1.
    N. S. Bakhvalov, “On optimal methods for specifying information in the solution of differential equations,” Zh. Vych. Mat. Mat.Fiz., 2, No. 4, 569–592 (1962).Google Scholar
  2. 2.
    K. I. Babenko, “On the approximation of periodic functions of many variables by trigonometric polynomials,” Dokl. Akad. Nauk SSSR, 132, No. 2, 247–250 (1960).Google Scholar
  3. 3.
    J. F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New York 1980.MATHGoogle Scholar
  4. 4.
    J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, Information. Uncertainty. Complexity, Addison-Wesley, London 1983.MATHGoogle Scholar
  5. 5.
    N. P. Komeichuk, “Complexity of approximation problems,” Ukr. Mat. Zh., 48, No. 12, 1683–1694 (1996).CrossRefGoogle Scholar
  6. 6.
    N. P. Komeichuk, “On complexity of approximation problems,” E. J. Approxim., 3, No. 3, 251–273 (1997).Google Scholar
  7. 7.
    S. V. Pcrcverzev, “On the complexity of the problem of solution of Fredholm equations of the second kind with smooth kernels. 1,” Ukr. Mat. Zh., 40, No. 1, 84–91 (1988).Google Scholar
  8. 8.
    S. V. Pcrcverzev, “On the complexity of the problem of solution of Fredholm equations of the second kind with smooth kernels. II,” Ukr. Mat. Zh., 41, No. 2, 189–193 (1989).CrossRefGoogle Scholar
  9. 9.
    S. V. Pcrcverzev, “Hyperbolic cross and the complexity of approximate solution of integral Fredholm equations of the second kindwith dil’fercntiable kernels,” Sib. Mat. Zh., 32, No. 1, 107–115 (1991).Google Scholar
  10. 10.
    S. Pcrcverzev and C. Scharipov, “Information complexity of equations of second kind with compact operators in Hilbert space,” J. Complexity, 8, 176–202 (1992).CrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Heinrich, “Random approximation in numerical analysis,” in: Functional Analysis, New York (1994), pp. 123–171.Google Scholar
  12. 12.
    S. V. Pereverzcv and M. Azizov, “On optimal methods for specifying information in the solution of integral equations with analytickernels,” Ukr. Mat. Zh., 48, No. 5, 656–665 (1996).CrossRefGoogle Scholar
  13. 13.
    K. Frank, S. Heinrich, and S. Pcreverzev, “Information complexity of multivariate Fredholm integral equations in Sobolev classes,” J. Complexity. 12. 17–34 (1996).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Frank. Optimal Numerical Solution of Multivariate Integral Equations, Shaker, Aachen 1997.Google Scholar
  15. 15.
    S. G. Solodkii, “On the information complexity of some classes of operator equations,” Ukr. Mat. Zh., 49, No. 9, 1271–1277 (1997).CrossRefMathSciNetGoogle Scholar
  16. 16.
    V. N. Temlyakov, “Approximation of functions with bounded mixed derivatives,” Tr. Mat. Inst. Akad. Nauk SSSR, 128, 3–112 (1986).Google Scholar
  17. 17.
    G. M. Vainikko and A. Yu. Veretcnnikov, Iterative Procedures in Ill-Posed Problems [in Russian] Nauka, Moscow 1986.Google Scholar
  18. 18.
    V. K. Ivanov, V. V. Vasin, and V. PTanana. Theory of Linear III-Posed Problems and Its Applications (in Russian], Nauka, Moscow (1978).Google Scholar
  19. 19.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solution of III-Posed Problems [in Russian] Nauka, Moscow 1979.Google Scholar
  20. 20.
    A. V. Goncharskii, A. S. Leonov, and A. G. Yagola, “Finite-difference approximation of linear ill-posed problems,” Zh. Vych. Mat.Mat. Fiz., 14, No. 1, 15–24 (1974).Google Scholar
  21. 21.
    A. B. Bakushinskii, “A general procedure for the construction of regularizing algorithms for linear ill-posed equations in a Hilbertspace,” Zh. Vych. Mat. Mat. Fiz., 7, No. 3, 672–677 (1967).MathSciNetGoogle Scholar
  22. 22.
    R. Plato and G. Vainikko, “On the rcgularization of projection methods in solving ill-posed problems.” Numer. Math., 57, 63–70 (1990).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    S. V. Pereverzcv and S. G. Solodkii, “The minimal radius of Galerkin information for the Fredholm problem of the first kind,” J. Complexity. 12, 176–202 (1996).Google Scholar
  24. 24.
    S. G. Solodkii, “Information complexity of projective algorithms for the solution of Fredholm equations of the first kind. II,” Ukr. Mat. Zh., 50, No. 6, 838–844 (1998).CrossRefMathSciNetGoogle Scholar
  25. 25.
    S. G. Solodkii, “Optimization of projective methods for the solution of linear ill-posed problems,” Zh. Vych. Mat. Mat. Fiz., 39, No. 2, 195–203 (1999).MathSciNetGoogle Scholar
  26. 26.
    S. G. Solodkii, “Optimization of projective schemes of discretization of ill-posed problems,” Ukr. Mat. Zh., 51, No. 10, 1398–1410 (1999).CrossRefMathSciNetGoogle Scholar
  27. 27.
    V. A. Morozov, “On the choice of a parameter in the solution of functional equations by the regularization method,” Dokl. Akad.Nauk SSSR, 175, No. 6, 1225–1228 (1997).Google Scholar
  28. 28.
    P. Maass and A. Rieder, “Wavelet-accelerated Tikhonov regularization with applications,” in: H. W. Engl, A. K. Louis, and W. Rundell (editors), Inverse Problems in Med. Imaging, Springer, Vienna (1997), pp. 134–158.Google Scholar
  29. 29.
    S. V. Pereverzev and S. Prossdorf, “A discretization of Volterra integral equations of the third kind with weakly singular kernels,” J. Inverse Ill-Posed Probl, 5, 565–577 (1998).MathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • S. V. Pereverzev
  • S. G. Solodkii

There are no affiliations available

Personalised recommendations