# Investigations of dnepropetrovsk mathematicians related to inequalities for derivatives of periodic functions and their applications

Article

- 35 Downloads
- 4 Citations

## Abstract

We present a survey of investigations of Dnepropetrovsk mathematicians related to Kolmogorov-type exact inequalities for norms of intermediate derivatives of periodic functions and their applications in approximation theory.

## Keywords

Periodic Function Approximation Theory Finite Interval Extremal Property Linear Differential Operator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.G. H. Hardy and J. E. Littlewood, “Contribution to the arithmetic theory of series,”
*Proc. London Math.*,**11**, No. 2, 411–478 (1912).Google Scholar - 2.E. Landau, “Einige Ungleichungen fur zweimal differenzierbare Functionen,”
*Proc. London Math.*. 13, 43–9 (1913).CrossRefGoogle Scholar - 3.J. Hadamard, “Sur le module maximum d’une fonction et de ses derivees,”
*C R. Soc. Math. France*. 41, 68–72 (1914).Google Scholar - 4.A. N. Kolmogorov,
*Selected Works. Mathematics. Mechanics*[in Russian] Nauka, Moscow 1985.Google Scholar - 5.Yu. G. Bosse G. E. Shilov, “On inequalities for derivatives,” in:
*Collection of Works of Student Scientific Societies of MoscowUniversity*[in Russian], Moscow University, Moscow (1937), pp. 17–27.Google Scholar - 6.N. P. Komeichuk, V. F. Babenko, and A. A. Ligun,
*Extremal Properties of Polynomials and Splines*[in Russian], Naukova Dumka,Kiev (1992).Google Scholar - 7.N. P. Komeichuk, A. A. Ligun, and V. F. Babenko,
*Extremal Properties of Polynomials and Splines*. Nova, New York (1996).Google Scholar - 8.N. P. Komeichuk,
*Exact Constants in Approximation Theory*[in Russian] Nauka, Moscow 1987.Google Scholar - 9.N. P. Komeichuk, A. A. Ligun, and V. G. Doronin,
*Approximation with Constraints*[in Russian] Naukova Dumka, Kiev 1982.Google Scholar - 10.S. Mandelbrojt,
*Series Adherentes, Regularisations des Suites. Applications*. Gauthier-Villars (1952).Google Scholar - 11.A. A. Ligun, “Exact inequalities for upper bounds of seminorms on the classes of periodic functions,”
*Mat. Zametki*,**13**, No. 5, 647–654 (1973).zbMATHMathSciNetGoogle Scholar - 12.A. A. Ligun, “Exact constants in Jackson-type inequalities,” in:
*Special Problems in the Theory of Approximation and Optimal Control by Distributed Systems*[in Russian], Vyshcha Shkola, Kiev (1990), pp. 5–74.Google Scholar - 13.G. H. Hardy, J. E. Littlewood, and G. Polya,
*Inequalities*, Cambridge (1934).Google Scholar - 14.E. M. Stein, “Functions of exponential type,”
*Ann. Math.*,**65**, No. 3, 582–592 (1957).CrossRefGoogle Scholar - 15.A. G. Taikov, “Kolmogorov-type inequalities and the best formulas for numerical differentiation,”
*Mat. Zametki*,**4**, No. 5, 233–238 (1968).MathSciNetGoogle Scholar - 16.A. P. Matorin, “Inequalities for the largest absolute values of a function and its derivatives on a half line,”
*Ukr. Mat. Zh.*,**5**, No. 3, 262–266 (1955).MathSciNetGoogle Scholar - 17.I. J. Shoenberg and A. Cavaretta, “Solution of Landau’s problem concerning higher derivatives on a half line,” in:
*Proceedings ofthe Conference on Approximation Theory (Varna-Sofia)*, Sofia (1972), pp. 297–308.Google Scholar - 18.Yu. I. Lyubich, “On inequalities for powers of a linear operator,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**24**, 825–864 (1960).zbMATHMathSciNetGoogle Scholar - 19.N.P. Kuptsov, “Kolmogorov estimates for derivatives in
*L*_{2}[0, ∞),”*Tr. Mat. Inst. Akad. Nauk SSSR*,**138**, 94–117 (1975).zbMATHGoogle Scholar - 20.V. N. Gabushin, “On the best approximation of the operator of differentiation on a half line,”
*Mat. Zametki*,**6**, No. 5, 573–582 (1969).MathSciNetGoogle Scholar - 21.V. V. Arestov and V. N. Gabushin, “The best approximation of unbounded operators by bounded operators,”
*Izv. Vyssh. Uchebn.Zaved., Ser. Mat.*, No. 11, 44–66 (1995).Google Scholar - 22.M. K. Kwong and A. Zettl, “Norm inequalities for derivatives and differences,”
*Led. Notes Math.*,**1536**(1992).Google Scholar - 23.V. M. Tikhomirov and G. G. Magaril-Il’yacv, “Inequalities for derivatives,” in:
*Comments to Selected Works of A. N. Kolmogorov*[in Russian], Nauka, Moscow (1985). pp. 387–390.Google Scholar - 24.D. S. Mitrinovic, J. E. Pecharic, and A. M. Fink,
*Inequalities Involving Functions and Their Integrals and Derivatives*, Kluwer.Dordrecht (1991).zbMATHGoogle Scholar - 25.V. I. Burenkov, “On exact constants in inequalities for norms of intermediate derivatives on a Unite interval. I,”
*Tr. Mat. Inst. Akad.Nauk SSSR*,**156**, 22–29 (1980).zbMATHMathSciNetGoogle Scholar - 26.V. I. Burenkov, “On exact constants in inequalities for norms of intermediate derivatives on a Unite interval. II,”
*Tr. Mat. Inst. Akad.Nauk SSSR*,**173**, 38–49 (1980).MathSciNetGoogle Scholar - 27.A. Yu. Shadrin, “To the Landau-Kolmogorov problem on a finite interval,” in:
*Proceedings of the International Conference “OpenProblems in Approximation Theom” (Voneshta Voda, June 18–24, 1993)*(1993), pp. 192–204.Google Scholar - 28.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Additive inequalities for the intermediate derivatives of functions defined on afinite interval,”
*Ukr. Mat. Zh.*,**49**, No. 5, 619–628 (1997).zbMATHCrossRefMathSciNetGoogle Scholar - 29.V. N. Gabushin, “Inequalities for norms of a function and its derivatives in the metrics of Lp,”
*Mat. Zametki*, No. 3, 291–298 (1967).Google Scholar - 30.B. E. Klots, “Approximation of differentiable functions by functions of higher smoothness,”
*Mat. Zametki*,**21**, No. 1, 21–32 (1977).zbMATHMathSciNetGoogle Scholar - 31.L. Hormander, “A new proof and generalization of inequality of Bohr,”
*Math. Scand.*,**2**, 33–45 (1954).MathSciNetGoogle Scholar - 32.A. Sharma and T. Tzimbalario, “Landau-type inequalities for some linear differential operators,”
*III. J. Math.*,**20**, No. 3, 443–455 (1976).zbMATHMathSciNetGoogle Scholar - 33.Nguyen Thi Thieu Hoa, “On one extremal problem for classes of convolutions that do not increase oscillations,”
*Vesm. Most Univ.,Ser. Mat., Mekh.*,**5**, 3–7 (1982).Google Scholar - 34.Yongshen Syn, “Inequalities of Landau-Kolmogorov type for some linear differential operators,”
*Kexue Tongbao*,**30**, No. 8, 995–998 (1985).MathSciNetGoogle Scholar - 35.V. F. Babenko, “Extremal problems in approximation theory and inequalities for permutations,”
*Dokl. Akad. Nauk SSSR*,**290**, No. 5, 1033–1036 (1986).MathSciNetGoogle Scholar - 36.V. F. Babenko,
*Extremal Problems in Approximation Theory and Nonsymmetric Norms*[in Russian], Doctoral-Degree Thesis(Physics and Mathematics), Kiev (1989).Google Scholar - 37.N. P. Korneichuk, “On the best uniform approximation on certain classes of continuous functions,”
*Dokl. Akad. Nauk SSSR*,**140**, No. 4, 748–751 (1961).MathSciNetGoogle Scholar - 38.N. P. Korneichuk, “Extremal values of functional and the best approximations on classes of periodic functions,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**35**, No. 1, 93–124 (1971).MathSciNetGoogle Scholar - 39.N. P. Korneichuk, “Inequalities for differentiable periodic functions and the best approximation of one class of functions by anotherclass,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**36**, No. 2, 423–434 (1972).MathSciNetGoogle Scholar - 40.N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and C. A. Pichugov, “Inequalities for upper bounds of functional and their applicationsto approximation theory,”
*Dopov. Akad. Nauk Ukr.*, No. 1, 24-29 (1999).Google Scholar - 41.N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and C. A. Pichugov, “Inequalities for upper bounds of functionals on the classes
*W*^{r}*H*^{ω}and their applications,”*Ukr. Mat. Zh.*,**52**, No. 1, 66–84 (2000).CrossRefMathSciNetGoogle Scholar - 42.A. Yu. Shadrin, “Kolmogorov-type inequalities and estimates of spline-interpolation for periodic functions from the class
*W*_{2}^{m},”*Mat. Zametki*,**48**, No. 4, 132–139 (1990).MathSciNetGoogle Scholar - 43.M. W. Certain and T. G. Kurtz, “Landau-Kolmogorov inequalities for semigroups and groups,”
*Proc. Amer. Math. Soc*,**63**, 226–230 (1977).zbMATHCrossRefMathSciNetGoogle Scholar - 44.V. F. Babenko and S. A. Pichugov, “A comment to the Kolmogorov inequality,” in:
*Investigations on Contemporary Problems ofSummation and Approximation of Functions and Their Applications*[in Russian], Dnepropetrovsk University, Dnepropetrovsk(1980), pp. 14–17.Google Scholar - 45.V. F. Babenko and S. A. Pichugov, “On the Stein method,” in:
*Approximation of Functions and Summation of Series*[in Russian), Dnepropetrovsk University, Dnepropetrovsk (1991), pp. 7–10.Google Scholar - 46.A. A. Ligun, “Inequalities for upper bounds of functionals,”
*Analysis Math.*,**2**, No. 1, 11–40 (1976).CrossRefMathSciNetGoogle Scholar - 47.V. F. Babenko, “Nonsymmetric extremal problems in approximation theory,”
*Dokl. Akad. Nauk SSSR*,**269**, No. 3, 521–524 (1983).MathSciNetGoogle Scholar - 48.V. F. Babenko, “Exact inequalities for norms of conjugate functions and their applications,”
*Ukr. Mat. Zh.*,**39**, No. 2, 139–144 (1987).CrossRefMathSciNetGoogle Scholar - 49.V. F. Babenko, “Exact inequalities for norms of intermediate derivatives of half-integral order and their applications,”
*Dopov. Akad.Nauk Ukr.*, No. 2, 23–26 (1997).Google Scholar - 50.V. F. Babenko, “Exact inequalities for norms of intermediate derivatives of half-integer order and some of their applications,” in:
*Approximation Theory and Applications*, Hadronic Press, Palm Harbor (US A) (1998), pp. 5–16.Google Scholar - 51.V. F. Babenko and V. N. Glushko, “On some exact inequalities for L,-norms of conjugate functions and their applications,” in:
*Contemporary Problems in Approximation Theory and Complex Analysis*[in Russian], Institute of Mathematics, Ukrainian Academyof Sciences, Kiev (1990), pp. 5–12.Google Scholar - 52.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “New exact inequalities of Kolmogorov type for periodic functions.”
*Dopov.Akad. Nauk Ukr.*, No. 7, 7–10 (1998).Google Scholar - 53.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities for norms of intermediate derivatives of periodic functions and theirapplications,”
*E. J. Approxim.*,**3**, No. 3, 351–376 (1997).zbMATHMathSciNetGoogle Scholar - 54.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of Kolmogorov type and some of their applications in approximationtheory,” in:
*Proceedings of the Third International Conference on Functional Analysis and Approximation Theory(Acauafreda di Maratea (Potenza-Italy), September 23–28, 1996)*, Vol. I, Suppl. Rend. Cir. Mat. Palermo, Ser. II, No. 52 (1998),pp. 223–237.Google Scholar - 55.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On the exact inequalities of Kolmogorov type and some of their applications,”in:
*New Approaches in Nonlinear Analysis*, Hadronic Press, Palm Harbor (USA) (1999), pp. 9–50.Google Scholar - 56.B. Sz. Nagy, “über Integralungleichungen zwischen einen Function und ihrer Ableitungee,”
*Acta Sci. Math.*,**10**, 64–74 (1941).Google Scholar - 57.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Sz.-Nagy-type inequalities for periodic functions,” in:
*Abstracts of the InternationalConference “Approximation Theory and Harmonic Analysis” (Tula, Russia, May 26–29, 1998)*[in Russian], Tula (1998),p. 29.Google Scholar - 58.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of the Sz.-Nagy type for periodic functions,” in:
*Proceedings ofthe International Mathematical Conference “Contemporary Problems in Mathematics” (Chernovtsy-Kiev)*[in Russian], Part 1,(1998), pp. 9–11.Google Scholar - 59.V. F. Babenko, “Inequalities of Landau-Kolmogorov-Sz.-Nagy type,” in:
*Abstracts of the International Congress ofMathematicians (Berlin, August 18–27, 1998)*(1998), p. 115.Google Scholar - 60.V. F. Babenko and M. B. Vakarchuk, “On inequalities of Kolmogorov-Hormander type for functions bounded on a discrete lattice,”
*Ukr. Mat. Zh.*,**49**, No. 7, 988–992 (1997).zbMATHCrossRefMathSciNetGoogle Scholar - 61.V. N, Gabushin, “On some inequalities for derivatives of functions,” in:
*Methods for Regularization of Unstable Problems*[in Russian],IMM UNTs AN SSSR, (1976), pp. 20–26.Google Scholar - 62.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of Kolmogorov type in the case of low smoothness,”
*Dopov. Akad. Nauk Ukr.*, No. 6, 11–15 (1998).Google Scholar - 63.V. V. Arestov and V. I. Berdyshev, “Inequalities for differentiable functions,” in:
*Methods for the Solution of Conditionally Well-Posed Problems*[in Russian], IMM UNTs AN SSSR, (1975), pp. 108–138.Google Scholar - 64.V. V. Arestov, “On exact inequalities for norms of functions and their derivatives,”
*Acta Sci. Math.*,**33**, No. 3–4, 243–267 (1972).zbMATHMathSciNetGoogle Scholar - 65.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On some exact inequalities of Kolmogorov type for periodic functions,” in:
*Fourier Series: Theory and Applications*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, (1998),pp. 30–42.Google Scholar - 66.A. A. Ligun, “On inequalities for norms of derivatives of periodic functions,”
*Mat. Zametki*,**33**, No. 3, 385–391 (1983).MathSciNetGoogle Scholar - 67.V. F. Babenko and A. A. Ligun, “Bernstein-type inequalities for /.-splines,”
*Ukr. Mat. Zh.*,**45**, No. 1, 10–20 (1993).CrossRefMathSciNetGoogle Scholar - 68.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of Kolmogorov type that take into account the number ofchanges of the sign of derivatives,”
*Dopov. Akad. Nauk Ukr.*, No. 8, 12–16 (1998).Google Scholar - 69.S. B. Stechkin, “Inequalities for norms of derivatives of an arbitrary function,”
*Acta Sci. Math.*,**26**. 225–230 (1965).zbMATHGoogle Scholar - 70.S. B. Stechkin, “The best approximation of linear operators,”
*Mat. Zametki*,**1**, No. 2, 137–148 (1967).MathSciNetGoogle Scholar - 71.L. V. Taikov, “On the best approximation in the mean for certain classes of analytic functions,”
*Mat. Zametki*,**1**, No. 2, 155–162 (1967).MathSciNetGoogle Scholar - 72.V. V. Arestov, “On certain extremal problems for differentiable functions of one variable,”
*Tr. Mat. Inst. Akad. Nauk SSSR*,**138**, 3–26 (1975).zbMATHMathSciNetGoogle Scholar - 73.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Multivariate inequalities of Kolmogorov type and their applications,” in:G. Nurnbcrger, J. V. Schmidt, and G. Walz (eds.),
*Proceedings of the Mannheim Conference “Multivariate Approximation and Splines, 1996”*(1997), pp. 1–12.Google Scholar - 74.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Kolmogorov-type inequalities for operators and extremal problems in approximationtheory,”
*Dokl. Ros. Akad. Nauk*,**356**, No. 4, 439–44 (1997).MathSciNetGoogle Scholar - 75.G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Russias,
*Topics in Polynomials: Extremal Problems, Inequalities, Zeros*, WorldScientific, Singapore 1994.zbMATHGoogle Scholar - 76.V. F. Babenko and A. A. Ligun, “Generalization of certain extremal properties of splines,”
*Ukr. Mat. Zh.*,**47**, No. 3, 403–407 (1995).zbMATHCrossRefMathSciNetGoogle Scholar - 77.V. F. Babenko, “Inequalities for norms of intermediate derivatives and some their applications,” in:
*Recent Progress in Inequalities*,Kluwer, Dordrecht (1998), pp. 77–96.Google Scholar - 78.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On inequalities for derivatives on a segment,” in:
*Approximation Theory andProblems in Computational Mathematics*[in Russian ], Dnepropetrovsk (1993), p. 12.Google Scholar - 79.V. F. Babenko and Zh. B. Uedraogo, “On exact constants in inequalities for norms of derivatives on a finite segment,”
*Ukr. Mat. Zh.*,**51**, No. 1, 117–119 (1999).zbMATHCrossRefMathSciNetGoogle Scholar - 80.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities for intermediate derivatives of differentiable mappings ofBanach spaces,”
*Dopov. Akad. Nauk Ukr.*, No. 1, 22–25 (1997).Google Scholar - 81.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On additive inequalities for intermediate derivatives of differentiable mappingsof Banach spaces,”
*Mat. Zametki*,**63**, No. 3, 332–342 (1998).MathSciNetGoogle Scholar - 82.V. F. Babenko. V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of Landau-Kolmogorov-Hormander type on a semiaxis,”
*Dopov. Akad. Nauk Ukr.*, No. 4, 34–38 (1997).Google Scholar - 83.V. F. Babenko and S. A. Selivanova, “Relationship between Kolmogorov-type inequalities for periodic and nonperiodic functions,” in:
*Abstracts of the Second School “Fourier Series: Theory and Applications” (Kamenets-Podol’skii, June 30-July 5, 1997)*[in Russian],Kiev (1997), pp. 19–20.Google Scholar - 84.V. F. Babenko and S. A. Selivanova, “On Kolmogorov-type inequalities for periodic and nonperiodic functions,” in:
*DifferentialEquations and Their Applications*[in Russian], Dnepropetrovsk University, Dnepropetrovsk (1998), pp. 91–95.Google Scholar - 85.V. F. Babenko and S. A. Selivanova, “On the connection between certain inequalities of the Kolmogorov type for periodic and non-periodic functions,”
*Ukr. Mat. Zh.*. 51, No. 2, 147–157 (1999).zbMATHCrossRefMathSciNetGoogle Scholar - 86.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On inequalities of Landau-Hadamard-Kolmogorov type for the
*L*_{2}-norm of anintermediate derivative,”*E. J. Approxim.*,**2**, No. 3, 343–368 (1996).zbMATHMathSciNetGoogle Scholar - 87.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of the Landau-Hadamard-Kolmogorov type for functionsof many variables,”
*Dokl. Ros. Akad. Nauk*,**356**, No. 1, 7–9 (1997).MathSciNetGoogle Scholar - 88.V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Exact inequalities of Kolmogorov type for multivariate functions and their applications,”
*E. J. Approxim.*,**3**, No. 2, 155–186 (1997).zbMATHMathSciNetGoogle Scholar - 89.V. F. Babenko, “Exact inequalities of the Kolmogorov type and some of their applications,” in:
*Abstracts of the International Conferenceon Approximation Theory and its Applications Dedicated to the Memory of V. K. Dzyadyk*. Kiev (1999), pp. 9–10.Google Scholar

## Copyright information

© Kluwer Academic/Plenum Publishers 2000