Advertisement

Ukrainian Mathematical Journal

, Volume 52, Issue 1, pp 8–28 | Cite as

Investigations of dnepropetrovsk mathematicians related to inequalities for derivatives of periodic functions and their applications

  • V. F. Babenko
Article

Abstract

We present a survey of investigations of Dnepropetrovsk mathematicians related to Kolmogorov-type exact inequalities for norms of intermediate derivatives of periodic functions and their applications in approximation theory.

Keywords

Periodic Function Approximation Theory Finite Interval Extremal Property Linear Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Hardy and J. E. Littlewood, “Contribution to the arithmetic theory of series,” Proc. London Math., 11, No. 2, 411–478 (1912).Google Scholar
  2. 2.
    E. Landau, “Einige Ungleichungen fur zweimal differenzierbare Functionen,” Proc. London Math.. 13, 43–9 (1913).CrossRefGoogle Scholar
  3. 3.
    J. Hadamard, “Sur le module maximum d’une fonction et de ses derivees,” C R. Soc. Math. France. 41, 68–72 (1914).Google Scholar
  4. 4.
    A. N. Kolmogorov, Selected Works. Mathematics. Mechanics [in Russian] Nauka, Moscow 1985.Google Scholar
  5. 5.
    Yu. G. Bosse G. E. Shilov, “On inequalities for derivatives,” in: Collection of Works of Student Scientific Societies of MoscowUniversity [in Russian], Moscow University, Moscow (1937), pp. 17–27.Google Scholar
  6. 6.
    N. P. Komeichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka,Kiev (1992).Google Scholar
  7. 7.
    N. P. Komeichuk, A. A. Ligun, and V. F. Babenko, Extremal Properties of Polynomials and Splines. Nova, New York (1996).Google Scholar
  8. 8.
    N. P. Komeichuk, Exact Constants in Approximation Theory [in Russian] Nauka, Moscow 1987.Google Scholar
  9. 9.
    N. P. Komeichuk, A. A. Ligun, and V. G. Doronin, Approximation with Constraints [in Russian] Naukova Dumka, Kiev 1982.Google Scholar
  10. 10.
    S. Mandelbrojt, Series Adherentes, Regularisations des Suites. Applications. Gauthier-Villars (1952).Google Scholar
  11. 11.
    A. A. Ligun, “Exact inequalities for upper bounds of seminorms on the classes of periodic functions,” Mat. Zametki, 13, No. 5, 647–654 (1973).zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. A. Ligun, “Exact constants in Jackson-type inequalities,” in: Special Problems in the Theory of Approximation and Optimal Control by Distributed Systems [in Russian], Vyshcha Shkola, Kiev (1990), pp. 5–74.Google Scholar
  13. 13.
    G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge (1934).Google Scholar
  14. 14.
    E. M. Stein, “Functions of exponential type,” Ann. Math., 65, No. 3, 582–592 (1957).CrossRefGoogle Scholar
  15. 15.
    A. G. Taikov, “Kolmogorov-type inequalities and the best formulas for numerical differentiation,” Mat. Zametki, 4, No. 5, 233–238 (1968).MathSciNetGoogle Scholar
  16. 16.
    A. P. Matorin, “Inequalities for the largest absolute values of a function and its derivatives on a half line,” Ukr. Mat. Zh., 5, No. 3, 262–266 (1955).MathSciNetGoogle Scholar
  17. 17.
    I. J. Shoenberg and A. Cavaretta, “Solution of Landau’s problem concerning higher derivatives on a half line,” in: Proceedings ofthe Conference on Approximation Theory (Varna-Sofia), Sofia (1972), pp. 297–308.Google Scholar
  18. 18.
    Yu. I. Lyubich, “On inequalities for powers of a linear operator,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, 825–864 (1960).zbMATHMathSciNetGoogle Scholar
  19. 19.
    N.P. Kuptsov, “Kolmogorov estimates for derivatives in L 2[0, ∞),” Tr. Mat. Inst. Akad. Nauk SSSR, 138, 94–117 (1975).zbMATHGoogle Scholar
  20. 20.
    V. N. Gabushin, “On the best approximation of the operator of differentiation on a half line,” Mat. Zametki, 6, No. 5, 573–582 (1969).MathSciNetGoogle Scholar
  21. 21.
    V. V. Arestov and V. N. Gabushin, “The best approximation of unbounded operators by bounded operators,” Izv. Vyssh. Uchebn.Zaved., Ser. Mat., No. 11, 44–66 (1995).Google Scholar
  22. 22.
    M. K. Kwong and A. Zettl, “Norm inequalities for derivatives and differences,” Led. Notes Math., 1536 (1992).Google Scholar
  23. 23.
    V. M. Tikhomirov and G. G. Magaril-Il’yacv, “Inequalities for derivatives,” in: Comments to Selected Works of A. N. Kolmogorov[in Russian], Nauka, Moscow (1985). pp. 387–390.Google Scholar
  24. 24.
    D. S. Mitrinovic, J. E. Pecharic, and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer.Dordrecht (1991).zbMATHGoogle Scholar
  25. 25.
    V. I. Burenkov, “On exact constants in inequalities for norms of intermediate derivatives on a Unite interval. I,” Tr. Mat. Inst. Akad.Nauk SSSR, 156, 22–29 (1980).zbMATHMathSciNetGoogle Scholar
  26. 26.
    V. I. Burenkov, “On exact constants in inequalities for norms of intermediate derivatives on a Unite interval. II,” Tr. Mat. Inst. Akad.Nauk SSSR, 173, 38–49 (1980).MathSciNetGoogle Scholar
  27. 27.
    A. Yu. Shadrin, “To the Landau-Kolmogorov problem on a finite interval,” in: Proceedings of the International Conference “OpenProblems in Approximation Theom” (Voneshta Voda, June 18–24, 1993) (1993), pp. 192–204.Google Scholar
  28. 28.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Additive inequalities for the intermediate derivatives of functions defined on afinite interval,” Ukr. Mat. Zh., 49, No. 5, 619–628 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    V. N. Gabushin, “Inequalities for norms of a function and its derivatives in the metrics of Lp,” Mat. Zametki, No. 3, 291–298 (1967).Google Scholar
  30. 30.
    B. E. Klots, “Approximation of differentiable functions by functions of higher smoothness,” Mat. Zametki, 21, No. 1, 21–32 (1977).zbMATHMathSciNetGoogle Scholar
  31. 31.
    L. Hormander, “A new proof and generalization of inequality of Bohr,” Math. Scand., 2, 33–45 (1954).MathSciNetGoogle Scholar
  32. 32.
    A. Sharma and T. Tzimbalario, “Landau-type inequalities for some linear differential operators,” III. J. Math., 20, No. 3, 443–455 (1976).zbMATHMathSciNetGoogle Scholar
  33. 33.
    Nguyen Thi Thieu Hoa, “On one extremal problem for classes of convolutions that do not increase oscillations,” Vesm. Most Univ.,Ser. Mat., Mekh., 5, 3–7 (1982).Google Scholar
  34. 34.
    Yongshen Syn, “Inequalities of Landau-Kolmogorov type for some linear differential operators,” Kexue Tongbao, 30, No. 8, 995–998 (1985).MathSciNetGoogle Scholar
  35. 35.
    V. F. Babenko, “Extremal problems in approximation theory and inequalities for permutations,” Dokl. Akad. Nauk SSSR, 290, No. 5, 1033–1036 (1986).MathSciNetGoogle Scholar
  36. 36.
    V. F. Babenko, Extremal Problems in Approximation Theory and Nonsymmetric Norms [in Russian], Doctoral-Degree Thesis(Physics and Mathematics), Kiev (1989).Google Scholar
  37. 37.
    N. P. Korneichuk, “On the best uniform approximation on certain classes of continuous functions,” Dokl. Akad. Nauk SSSR, 140, No. 4, 748–751 (1961).MathSciNetGoogle Scholar
  38. 38.
    N. P. Korneichuk, “Extremal values of functional and the best approximations on classes of periodic functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 35, No. 1, 93–124 (1971).MathSciNetGoogle Scholar
  39. 39.
    N. P. Korneichuk, “Inequalities for differentiable periodic functions and the best approximation of one class of functions by anotherclass,” Izv. Akad. Nauk SSSR, Ser. Mat., 36, No. 2, 423–434 (1972).MathSciNetGoogle Scholar
  40. 40.
    N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and C. A. Pichugov, “Inequalities for upper bounds of functional and their applicationsto approximation theory,” Dopov. Akad. Nauk Ukr., No. 1, 24-29 (1999).Google Scholar
  41. 41.
    N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and C. A. Pichugov, “Inequalities for upper bounds of functionals on the classesW r H ω and their applications,” Ukr. Mat. Zh., 52, No. 1, 66–84 (2000).CrossRefMathSciNetGoogle Scholar
  42. 42.
    A. Yu. Shadrin, “Kolmogorov-type inequalities and estimates of spline-interpolation for periodic functions from the class W 2m,” Mat. Zametki, 48, No. 4, 132–139 (1990).MathSciNetGoogle Scholar
  43. 43.
    M. W. Certain and T. G. Kurtz, “Landau-Kolmogorov inequalities for semigroups and groups,” Proc. Amer. Math. Soc, 63, 226–230 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    V. F. Babenko and S. A. Pichugov, “A comment to the Kolmogorov inequality,” in: Investigations on Contemporary Problems ofSummation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk University, Dnepropetrovsk(1980), pp. 14–17.Google Scholar
  45. 45.
    V. F. Babenko and S. A. Pichugov, “On the Stein method,” in: Approximation of Functions and Summation of Series [in Russian), Dnepropetrovsk University, Dnepropetrovsk (1991), pp. 7–10.Google Scholar
  46. 46.
    A. A. Ligun, “Inequalities for upper bounds of functionals,” Analysis Math., 2, No. 1, 11–40 (1976).CrossRefMathSciNetGoogle Scholar
  47. 47.
    V. F. Babenko, “Nonsymmetric extremal problems in approximation theory,” Dokl. Akad. Nauk SSSR, 269, No. 3, 521–524 (1983).MathSciNetGoogle Scholar
  48. 48.
    V. F. Babenko, “Exact inequalities for norms of conjugate functions and their applications,” Ukr. Mat. Zh., 39, No. 2, 139–144 (1987).CrossRefMathSciNetGoogle Scholar
  49. 49.
    V. F. Babenko, “Exact inequalities for norms of intermediate derivatives of half-integral order and their applications,” Dopov. Akad.Nauk Ukr., No. 2, 23–26 (1997).Google Scholar
  50. 50.
    V. F. Babenko, “Exact inequalities for norms of intermediate derivatives of half-integer order and some of their applications,” in:Approximation Theory and Applications, Hadronic Press, Palm Harbor (US A) (1998), pp. 5–16.Google Scholar
  51. 51.
    V. F. Babenko and V. N. Glushko, “On some exact inequalities for L,-norms of conjugate functions and their applications,” in:Contemporary Problems in Approximation Theory and Complex Analysis [in Russian], Institute of Mathematics, Ukrainian Academyof Sciences, Kiev (1990), pp. 5–12.Google Scholar
  52. 52.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “New exact inequalities of Kolmogorov type for periodic functions.” Dopov.Akad. Nauk Ukr., No. 7, 7–10 (1998).Google Scholar
  53. 53.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities for norms of intermediate derivatives of periodic functions and theirapplications,” E. J. Approxim., 3, No. 3, 351–376 (1997).zbMATHMathSciNetGoogle Scholar
  54. 54.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of Kolmogorov type and some of their applications in approximationtheory,” in: Proceedings of the Third International Conference on Functional Analysis and Approximation Theory(Acauafreda di Maratea (Potenza-Italy), September 23–28, 1996), Vol. I, Suppl. Rend. Cir. Mat. Palermo, Ser. II, No. 52 (1998),pp. 223–237.Google Scholar
  55. 55.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On the exact inequalities of Kolmogorov type and some of their applications,”in: New Approaches in Nonlinear Analysis, Hadronic Press, Palm Harbor (USA) (1999), pp. 9–50.Google Scholar
  56. 56.
    B. Sz. Nagy, “über Integralungleichungen zwischen einen Function und ihrer Ableitungee,” Acta Sci. Math., 10, 64–74 (1941).Google Scholar
  57. 57.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Sz.-Nagy-type inequalities for periodic functions,” in: Abstracts of the InternationalConference “Approximation Theory and Harmonic Analysis” (Tula, Russia, May 26–29, 1998) [in Russian], Tula (1998),p. 29.Google Scholar
  58. 58.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of the Sz.-Nagy type for periodic functions,” in: Proceedings ofthe International Mathematical Conference “Contemporary Problems in Mathematics” (Chernovtsy-Kiev) [in Russian], Part 1,(1998), pp. 9–11.Google Scholar
  59. 59.
    V. F. Babenko, “Inequalities of Landau-Kolmogorov-Sz.-Nagy type,” in: Abstracts of the International Congress ofMathematicians (Berlin, August 18–27, 1998) (1998), p. 115.Google Scholar
  60. 60.
    V. F. Babenko and M. B. Vakarchuk, “On inequalities of Kolmogorov-Hormander type for functions bounded on a discrete lattice,” Ukr. Mat. Zh., 49, No. 7, 988–992 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    V. N, Gabushin, “On some inequalities for derivatives of functions,” in: Methods for Regularization of Unstable Problems [in Russian],IMM UNTs AN SSSR, (1976), pp. 20–26.Google Scholar
  62. 62.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of Kolmogorov type in the case of low smoothness,” Dopov. Akad. Nauk Ukr., No. 6, 11–15 (1998).Google Scholar
  63. 63.
    V. V. Arestov and V. I. Berdyshev, “Inequalities for differentiable functions,” in: Methods for the Solution of Conditionally Well-Posed Problems[in Russian], IMM UNTs AN SSSR, (1975), pp. 108–138.Google Scholar
  64. 64.
    V. V. Arestov, “On exact inequalities for norms of functions and their derivatives,” Acta Sci. Math., 33, No. 3–4, 243–267 (1972).zbMATHMathSciNetGoogle Scholar
  65. 65.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On some exact inequalities of Kolmogorov type for periodic functions,” in:Fourier Series: Theory and Applications [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, (1998),pp. 30–42.Google Scholar
  66. 66.
    A. A. Ligun, “On inequalities for norms of derivatives of periodic functions,” Mat. Zametki, 33, No. 3, 385–391 (1983).MathSciNetGoogle Scholar
  67. 67.
    V. F. Babenko and A. A. Ligun, “Bernstein-type inequalities for /.-splines,” Ukr. Mat. Zh., 45, No. 1, 10–20 (1993).CrossRefMathSciNetGoogle Scholar
  68. 68.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of Kolmogorov type that take into account the number ofchanges of the sign of derivatives,” Dopov. Akad. Nauk Ukr., No. 8, 12–16 (1998).Google Scholar
  69. 69.
    S. B. Stechkin, “Inequalities for norms of derivatives of an arbitrary function,” Acta Sci. Math., 26. 225–230 (1965).zbMATHGoogle Scholar
  70. 70.
    S. B. Stechkin, “The best approximation of linear operators,” Mat. Zametki, 1, No. 2, 137–148 (1967).MathSciNetGoogle Scholar
  71. 71.
    L. V. Taikov, “On the best approximation in the mean for certain classes of analytic functions,” Mat. Zametki, 1, No. 2, 155–162 (1967).MathSciNetGoogle Scholar
  72. 72.
    V. V. Arestov, “On certain extremal problems for differentiable functions of one variable,” Tr. Mat. Inst. Akad. Nauk SSSR, 138, 3–26 (1975).zbMATHMathSciNetGoogle Scholar
  73. 73.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Multivariate inequalities of Kolmogorov type and their applications,” in:G. Nurnbcrger, J. V. Schmidt, and G. Walz (eds.), Proceedings of the Mannheim Conference “Multivariate Approximation and Splines, 1996” (1997), pp. 1–12.Google Scholar
  74. 74.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Kolmogorov-type inequalities for operators and extremal problems in approximationtheory,” Dokl. Ros. Akad. Nauk, 356, No. 4, 439–44 (1997).MathSciNetGoogle Scholar
  75. 75.
    G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Russias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, WorldScientific, Singapore 1994.zbMATHGoogle Scholar
  76. 76.
    V. F. Babenko and A. A. Ligun, “Generalization of certain extremal properties of splines,” Ukr. Mat. Zh., 47, No. 3, 403–407 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    V. F. Babenko, “Inequalities for norms of intermediate derivatives and some their applications,” in: Recent Progress in Inequalities,Kluwer, Dordrecht (1998), pp. 77–96.Google Scholar
  78. 78.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On inequalities for derivatives on a segment,” in: Approximation Theory andProblems in Computational Mathematics [in Russian ], Dnepropetrovsk (1993), p. 12.Google Scholar
  79. 79.
    V. F. Babenko and Zh. B. Uedraogo, “On exact constants in inequalities for norms of derivatives on a finite segment,” Ukr. Mat. Zh., 51, No. 1, 117–119 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities for intermediate derivatives of differentiable mappings ofBanach spaces,” Dopov. Akad. Nauk Ukr., No. 1, 22–25 (1997).Google Scholar
  81. 81.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On additive inequalities for intermediate derivatives of differentiable mappingsof Banach spaces,” Mat. Zametki, 63, No. 3, 332–342 (1998).MathSciNetGoogle Scholar
  82. 82.
    V. F. Babenko. V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of Landau-Kolmogorov-Hormander type on a semiaxis,” Dopov. Akad. Nauk Ukr., No. 4, 34–38 (1997).Google Scholar
  83. 83.
    V. F. Babenko and S. A. Selivanova, “Relationship between Kolmogorov-type inequalities for periodic and nonperiodic functions,” in: Abstracts of the Second School “Fourier Series: Theory and Applications” (Kamenets-Podol’skii, June 30-July 5, 1997) [in Russian],Kiev (1997), pp. 19–20.Google Scholar
  84. 84.
    V. F. Babenko and S. A. Selivanova, “On Kolmogorov-type inequalities for periodic and nonperiodic functions,” in: DifferentialEquations and Their Applications [in Russian], Dnepropetrovsk University, Dnepropetrovsk (1998), pp. 91–95.Google Scholar
  85. 85.
    V. F. Babenko and S. A. Selivanova, “On the connection between certain inequalities of the Kolmogorov type for periodic and non-periodic functions,” Ukr. Mat. Zh.. 51, No. 2, 147–157 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On inequalities of Landau-Hadamard-Kolmogorov type for the L 2-norm of anintermediate derivative,” E. J. Approxim., 2, No. 3, 343–368 (1996).zbMATHMathSciNetGoogle Scholar
  87. 87.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities of the Landau-Hadamard-Kolmogorov type for functionsof many variables,” Dokl. Ros. Akad. Nauk, 356, No. 1, 7–9 (1997).MathSciNetGoogle Scholar
  88. 88.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Exact inequalities of Kolmogorov type for multivariate functions and their applications,” E. J. Approxim., 3, No. 2, 155–186 (1997).zbMATHMathSciNetGoogle Scholar
  89. 89.
    V. F. Babenko, “Exact inequalities of the Kolmogorov type and some of their applications,” in: Abstracts of the International Conferenceon Approximation Theory and its Applications Dedicated to the Memory of V. K. Dzyadyk. Kiev (1999), pp. 9–10.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • V. F. Babenko

There are no affiliations available

Personalised recommendations