Ukrainian Mathematical Journal

, Volume 49, Issue 6, pp 930–934 | Cite as

Boundary-value problems for systems of difference equations

  • A. A. Boichuk
Brief Communications
  • 11 Downloads

Abstract

Boundary-value problems for systems of difference equations with discrete argument whose linear part is the Noetherian operator are considered. The necessary and sufficient conditions of the solvability of difference boundary-value problems of this sort are obtained.

Keywords

Difference Equation Vector Function Dimensional Matrix Noetherian Operator Generalize Inverse Operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. O. Gel’fond, Calculus of Finite Differences [in Russian], Nauka, Moscow (1967).Google Scholar
  2. 2.
    D. I. Martynyuk, Lectures on the Qualitative Theory of Difference Equations [in Russian], Naukova Dumka, Kiev (1972).Google Scholar
  3. 3.
    A. Halanay and D. Wexler, Qualitative Theory of Pulse Systems [Russian translation], Mir, Moscow (1971).Google Scholar
  4. 4.
    A. A. Samarskii and Yu. N. Karamzin, Difference Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  5. 5.
    A. N. Sharkovskii, Yu. L. Maistrenko, and E. Yu. Romanenko, Difference Equations and Their Applications [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  6. 6.
    G. P. Pelyukh, “On the existence of periodic solutions of discrete difference equations and their properties,” Ukr. Mat. Zh., 46. No. 10, 1382–1387 (1994).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Noetherian Boundary-Value Problems [in Russian], Institute of Mathematics, Ukranian Academy of Sciences, Kiev (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. A. Boichuk

There are no affiliations available

Personalised recommendations