Advertisement

Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries

  • H. Miyazaki
  • K. Hayashi
Cellular Engineering

Abstract

Mechanical properties of living endothelial cells in the abdominal aortas and in the medial and lateral wall of aortic bifurcations obtained from rabbits were determined by means of an atomic force microscope (AFM), focusing on the locational differences. Force (F)-indentation (δ) curves of the cells were expressed by an exponential function: F=a(exp(bδ)−1), where a and b are constants. The parameters b and c(=ab) represent the rate of modulus change and initial modulus, respectively. The slope of F-δ curves a and the parameter c were higher in the medial wall than in the other sites, which is attributable to abundant stress fibres in endothelial cells in the medial wall. There were no differences in the parameter b among the three locations. These results indicate that endothelial cells are stiffer in the medial wall of aortic bifurcation than in the other regions.

Keywords

Endothelial cells Mechanical properties Arteries Atomic force microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbee, K. A., Davies, P. F. andLal, R. (1994): ‘Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy’,Circ. Res.,74, pp. 163–171Google Scholar
  2. Barbee, K. A., Mundel, T., Lal, R. andDavies, P. F. (1995): ‘Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers’,Am. J. Physiol.,268, pp. H1765-H1772Google Scholar
  3. Berceli, S. A., Warty, V. S., Sheppeck, R. A., Mandarino, W. A., Tanksale, S. K. andBorovetz, H. S. (1990): ‘Hemodynamics and low density lipoprotein metabolism: rates of low density lipoprotein incorporation and degradation along medial and lateral walls of the rabbit aorto-iliac bifurcation’,Arteriosclerosis,10, pp. 688–694Google Scholar
  4. Caille, N., Tardy, Y. andMeister, J.-J. (1997): ‘Nucleus deformation of endothelial cells subjected to uniaxial deformation of their substrate’,Proceedings, 3rd International Conference on Cellular Engineering p. 51Google Scholar
  5. Davies, P. F., Mundel, T. andBarbee, K. A. (1995): ‘A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro’,J. Biomech.,28, pp. 1553–1560CrossRefGoogle Scholar
  6. Flaherty, J. T., Pierce, J. E., Ferrans, V. J., Patel, D. J., Tucker, W.K. andFry, D.L. (1972): ‘Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events’,Circ. Res.,30, pp. 23–33Google Scholar
  7. Franke, R.-P., Gräfe, M., Schnittler, H., Seiffge, D. andMittermayer, C. (1984): ‘Induction of human vascular endothelial stress fibers by fluid shear stress’,Nature,307, pp. 648–649CrossRefGoogle Scholar
  8. Goldmann, W. H. andEzzell, R. M. (1996): ‘Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology’,Exp. Cell Res.,226, pp. C234-C237CrossRefGoogle Scholar
  9. Hansma, H. G. andHoh, J. H. (1994): ‘Biomolecular imaging with the atomic force microscope’,Ann. Rev. Biophys. Biomol. Struct.,23, pp. 115–139CrossRefGoogle Scholar
  10. Hayashi, K. (1993): ‘Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls’,Trans. ASME, J. Biomech. Eng.,115, pp. 481–488CrossRefGoogle Scholar
  11. Hayashi, K., Yanai, Y. andNaiki, T. (1996): ‘A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation’,Trans. ASME. J. Biomech. Eng.,118, pp. 273–279CrossRefGoogle Scholar
  12. Hoh, J. H. andSchoenenberger, C. A. (1994): ‘Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy’,J. Cell Sci.,107, pp. 1105–1114Google Scholar
  13. Humphrey, J. D. (1995): ‘Mechanics of the arterial wall: review and directions’,Critical Rev. Biomed. Eng.,23, pp. 1–162Google Scholar
  14. Katoh, K., Masuda, M., Kano, Y., Jinguji, Y. andFujiwara, K. (1995): ‘Focal adhesion proteins associated with apical stress fibers of human fibroblasts’,Cell Motil. Cytoskeleton,103, pp. 63–70Google Scholar
  15. Kim, D. W., Langille, B. L., Wong, M. K. K. andGotlieb, A. I. (1989a): ‘Patterns of endothelial microfilament distribution in the rabbit aorta in situ’,Circ. Res.,64, pp. 21–31Google Scholar
  16. Kim, D. W., Gotlieb, A. I. andLangille, B. L. (1989b): ‘In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress’,Arteriosclerosis,9, pp. 439–445Google Scholar
  17. Lal, R. andJohn, S. A. (1994): ‘Biological applications of atomic force microscopy’,Am. J. Physiol.,266, pp. C1-C21Google Scholar
  18. Levesque, M. J., Liepsch, D., Moravec, S. andNerem, R. M. (1986): ‘Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta’,Arteriosclerosis,6, pp. 220–229Google Scholar
  19. Nerem, R. M. (1992): ‘Vascular fluid mechanics, the arterial wall, and atherosclerosis’,Trans. ASME. J. Biomech. Eng.,114, pp. 274–282CrossRefGoogle Scholar
  20. Okano, M. andYoshida, Y. (1992): ‘Endothelial cell morphology of atherosclerotic lesions and flow profiles at aortic bifurcations in cholesterol fed rabbits’,Trans. ASME. J. Biomech. Eng.,114, pp. 301–308CrossRefGoogle Scholar
  21. Ookawa, K., Sato, M. andOhshima, N. (1992): ‘Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress’,J. Biomech.,25, pp. 1321–1328CrossRefGoogle Scholar
  22. Ookawa, K., Sato, M. andOhshima, N. (1993): ‘Morphological changes of endothelial cells after exposure to fluid-imposed shear stress: differential responses induced by extracellular matrices’,Biorheology,30, pp. 131–140Google Scholar
  23. Osborn, M., Born, T., Koitsch, H.-J, andWeber, K. (1978): ‘Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubles and tonofilaments’,Cell,14, pp. 477–488CrossRefGoogle Scholar
  24. Reidy, M. A. andLangille, B. L. (1980): ‘The effect of local blood flow patterns on endothelial cell morphology’,Exp. Molecul. Pathol.,32, pp. 276–289CrossRefGoogle Scholar
  25. Ricci, D., Tedesco, M. andGrattarola, M. (1997): ‘Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy’,Microsc. Res. Tech.,36, pp. 165–171CrossRefGoogle Scholar
  26. Sato, M., Levesque, M. J. andNerem, R. M. (1987): ‘Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress’,Arteriosclerosis,7, pp. 276–286Google Scholar
  27. Sato, M. andOhshima, N. (1994): ‘Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells’,Biorheology,31, pp. 143–153Google Scholar
  28. Sato, M., Ohshima, N. andNerem, R. M. (1996): ‘Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress’,J. Biomech.,29, pp. 461–467CrossRefGoogle Scholar
  29. Shroff, S. G., Saner, D. R. andLal, R. (1995): ‘Dynamic micromechanical properties of vultured rat atrial myocytes measured by atomic force microscopy’,Am. J. Physiol.,269, pp. C286-C292Google Scholar
  30. Satcher, R., Dewey, C. F., Jr. andHartwig, J. H., (1997): ‘Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow’,Microcirculation,4, pp. 439-C453CrossRefGoogle Scholar
  31. Uematsu, M., Kitabatake, A., Tanouchi, J., Doi, Y., Masuyama, T., Fujii, K., Yoshida, Y., Ito, H., Ishihara, K., Hori, M., Inoue, M. andKamada, T. (1991): ‘Reduction of endothelial microfilament bundles in the low-shear region of the vanine sorta: association with intimal plaque formation in hypercholesterolemia’,Arterioscler. Thromb.,11, pp. 107–115Google Scholar
  32. Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V. andButt, H. J. (1993): ‘Deformation and height anomaly of soft surfaces studied with an AFM’,Nanotech.,4, pp. 106–113CrossRefGoogle Scholar
  33. White, G. E. andFujiwara, K. (1986): ‘Expression and intracellular distribution of stress fibers in aortic endothelium’,J. Cell Biol.,103, pp. 63–70CrossRefGoogle Scholar
  34. Wong, A. J., Pollard, T. D. andHerman, I. M. (1983): ‘Actin filament stress fibers in vascular endothelial cells in vivo’,Science,219, pp. 867–869CrossRefGoogle Scholar
  35. Yoshida, Y., Sue, W., Okano, M., Oyama, T., Yamane, T. andMitsumata, M. (1990): ‘The effects of augmented hemodynamic forces on the progression and topography of atherosclerotic plaques’,Ann. NY Acad. Sci.,598, pp. 256–273CrossRefGoogle Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  1. 1.Division of Mechanical Science, Department of Systems and Human Science, Graduate School of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations