# Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries

- 275 Downloads
- 35 Citations

## Abstract

Mechanical properties of living endothelial cells in the abdominal aortas and in the medial and lateral wall of aortic bifurcations obtained from rabbits were determined by means of an atomic force microscope (AFM), focusing on the locational differences. Force (F)-indentation (δ) curves of the cells were expressed by an exponential function: F=a(exp(bδ)−1), where a and b are constants. The parameters b and c(=ab) represent the rate of modulus change and initial modulus, respectively. The slope of F-δ curves a and the parameter c were higher in the medial wall than in the other sites, which is attributable to abundant stress fibres in endothelial cells in the medial wall. There were no differences in the parameter b among the three locations. These results indicate that endothelial cells are stiffer in the medial wall of aortic bifurcation than in the other regions.

### Keywords

Endothelial cells Mechanical properties Arteries Atomic force microscopy## Preview

Unable to display preview. Download preview PDF.

### References

- Barbee, K. A., Davies, P. F. andLal, R. (1994): ‘Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy’,
*Circ. Res.*,**74**, pp. 163–171Google Scholar - Barbee, K. A., Mundel, T., Lal, R. andDavies, P. F. (1995): ‘Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers’,
*Am. J. Physiol.*,**268**, pp. H1765-H1772Google Scholar - Berceli, S. A., Warty, V. S., Sheppeck, R. A., Mandarino, W. A., Tanksale, S. K. andBorovetz, H. S. (1990): ‘Hemodynamics and low density lipoprotein metabolism: rates of low density lipoprotein incorporation and degradation along medial and lateral walls of the rabbit aorto-iliac bifurcation’,
*Arteriosclerosis*,**10**, pp. 688–694Google Scholar - Caille, N., Tardy, Y. andMeister, J.-J. (1997): ‘Nucleus deformation of endothelial cells subjected to uniaxial deformation of their substrate’,
*Proceedings, 3rd International Conference on Cellular Engineering*p. 51Google Scholar - Davies, P. F., Mundel, T. andBarbee, K. A. (1995): ‘A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro’,
*J. Biomech.*,**28**, pp. 1553–1560CrossRefGoogle Scholar - Flaherty, J. T., Pierce, J. E., Ferrans, V. J., Patel, D. J., Tucker, W.K. andFry, D.L. (1972): ‘Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events’,
*Circ. Res.*,**30**, pp. 23–33Google Scholar - Franke, R.-P., Gräfe, M., Schnittler, H., Seiffge, D. andMittermayer, C. (1984): ‘Induction of human vascular endothelial stress fibers by fluid shear stress’,
*Nature*,**307**, pp. 648–649CrossRefGoogle Scholar - Goldmann, W. H. andEzzell, R. M. (1996): ‘Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology’,
*Exp. Cell Res.*,**226**, pp. C234-C237CrossRefGoogle Scholar - Hansma, H. G. andHoh, J. H. (1994): ‘Biomolecular imaging with the atomic force microscope’,
*Ann. Rev. Biophys. Biomol. Struct.*,**23**, pp. 115–139CrossRefGoogle Scholar - Hayashi, K. (1993): ‘Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls’,
*Trans. ASME, J. Biomech. Eng.*,**115**, pp. 481–488CrossRefGoogle Scholar - Hayashi, K., Yanai, Y. andNaiki, T. (1996): ‘A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation’,
*Trans. ASME. J. Biomech. Eng.*,**118**, pp. 273–279CrossRefGoogle Scholar - Hoh, J. H. andSchoenenberger, C. A. (1994): ‘Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy’,
*J. Cell Sci.*,**107**, pp. 1105–1114Google Scholar - Humphrey, J. D. (1995): ‘Mechanics of the arterial wall: review and directions’,
*Critical Rev. Biomed. Eng.*,**23**, pp. 1–162Google Scholar - Katoh, K., Masuda, M., Kano, Y., Jinguji, Y. andFujiwara, K. (1995): ‘Focal adhesion proteins associated with apical stress fibers of human fibroblasts’,
*Cell Motil. Cytoskeleton*,**103**, pp. 63–70Google Scholar - Kim, D. W., Langille, B. L., Wong, M. K. K. andGotlieb, A. I. (1989a): ‘Patterns of endothelial microfilament distribution in the rabbit aorta in situ’,
*Circ. Res.*,**64**, pp. 21–31Google Scholar - Kim, D. W., Gotlieb, A. I. andLangille, B. L. (1989b): ‘In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress’,
*Arteriosclerosis*,**9**, pp. 439–445Google Scholar - Lal, R. andJohn, S. A. (1994): ‘Biological applications of atomic force microscopy’,
*Am. J. Physiol.*,**266**, pp. C1-C21Google Scholar - Levesque, M. J., Liepsch, D., Moravec, S. andNerem, R. M. (1986): ‘Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta’,
*Arteriosclerosis*,**6**, pp. 220–229Google Scholar - Nerem, R. M. (1992): ‘Vascular fluid mechanics, the arterial wall, and atherosclerosis’,
*Trans. ASME. J. Biomech. Eng.*,**114**, pp. 274–282CrossRefGoogle Scholar - Okano, M. andYoshida, Y. (1992): ‘Endothelial cell morphology of atherosclerotic lesions and flow profiles at aortic bifurcations in cholesterol fed rabbits’,
*Trans. ASME. J. Biomech. Eng.*,**114**, pp. 301–308CrossRefGoogle Scholar - Ookawa, K., Sato, M. andOhshima, N. (1992): ‘Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress’,
*J. Biomech.*,**25**, pp. 1321–1328CrossRefGoogle Scholar - Ookawa, K., Sato, M. andOhshima, N. (1993): ‘Morphological changes of endothelial cells after exposure to fluid-imposed shear stress: differential responses induced by extracellular matrices’,
*Biorheology*,**30**, pp. 131–140Google Scholar - Osborn, M., Born, T., Koitsch, H.-J, andWeber, K. (1978): ‘Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubles and tonofilaments’,
*Cell*,**14**, pp. 477–488CrossRefGoogle Scholar - Reidy, M. A. andLangille, B. L. (1980): ‘The effect of local blood flow patterns on endothelial cell morphology’,
*Exp. Molecul. Pathol.*,**32**, pp. 276–289CrossRefGoogle Scholar - Ricci, D., Tedesco, M. andGrattarola, M. (1997): ‘Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy’,
*Microsc. Res. Tech.*,**36**, pp. 165–171CrossRefGoogle Scholar - Sato, M., Levesque, M. J. andNerem, R. M. (1987): ‘Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress’,
*Arteriosclerosis*,**7**, pp. 276–286Google Scholar - Sato, M. andOhshima, N. (1994): ‘Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells’,
*Biorheology*,**31**, pp. 143–153Google Scholar - Sato, M., Ohshima, N. andNerem, R. M. (1996): ‘Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress’,
*J. Biomech.*,**29**, pp. 461–467CrossRefGoogle Scholar - Shroff, S. G., Saner, D. R. andLal, R. (1995): ‘Dynamic micromechanical properties of vultured rat atrial myocytes measured by atomic force microscopy’,
*Am. J. Physiol.*,**269**, pp. C286-C292Google Scholar - Satcher, R., Dewey, C. F., Jr. andHartwig, J. H., (1997): ‘Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow’,
*Microcirculation*,**4**, pp. 439-C453CrossRefGoogle Scholar - Uematsu, M., Kitabatake, A., Tanouchi, J., Doi, Y., Masuyama, T., Fujii, K., Yoshida, Y., Ito, H., Ishihara, K., Hori, M., Inoue, M. andKamada, T. (1991): ‘Reduction of endothelial microfilament bundles in the low-shear region of the vanine sorta: association with intimal plaque formation in hypercholesterolemia’,
*Arterioscler. Thromb.*,**11**, pp. 107–115Google Scholar - Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V. andButt, H. J. (1993): ‘Deformation and height anomaly of soft surfaces studied with an AFM’,
*Nanotech.*,**4**, pp. 106–113CrossRefGoogle Scholar - White, G. E. andFujiwara, K. (1986): ‘Expression and intracellular distribution of stress fibers in aortic endothelium’,
*J. Cell Biol.*,**103**, pp. 63–70CrossRefGoogle Scholar - Wong, A. J., Pollard, T. D. andHerman, I. M. (1983): ‘Actin filament stress fibers in vascular endothelial cells in vivo’,
*Science*,**219**, pp. 867–869CrossRefGoogle Scholar - Yoshida, Y., Sue, W., Okano, M., Oyama, T., Yamane, T. andMitsumata, M. (1990): ‘The effects of augmented hemodynamic forces on the progression and topography of atherosclerotic plaques’,
*Ann. NY Acad. Sci.*,**598**, pp. 256–273CrossRefGoogle Scholar