Skip to main content
Log in

A chaos-based model for low complexity predictive coding scheme for compression and transmission of electroencephalogram data

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A method for low complexity, low bit rate transmission of EEG (electroencephalogram) data, based on chaotic principles, is presented. The EEG data is assumed to be generated by a non-linear dynamical system of E dimensions. The E dynamical variables are reconstructed from the one-dimensional time series by the process of time-delay embedding. A model of the form X[n+1]=F(X[n], X[n−1],...X[n−p]) is fitted for the data in the E-dimensional space and this model is used as predictor in the predictive coding scheme for transmission. This model is able to give a reduction of nearly 50% of the dynamic range of the error signal to be transmitted, with a reduced complexity, when compared to the conventionally used linear prediction method. This implies that a reduced bit rate of transmission with a reduced complexity can be obtained. The effects of variation of model parameters on the complexity and bit rate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, H. D. I., Brown, R., Sidorowich, J. J. andTsimring, L. S. (1993): ‘The analysis of observed chaotic data in physical systems’,Rev. Mod. Phys.,65, 1331–1392

    Article  MathSciNet  Google Scholar 

  • Antoniol, G. andTonella, P. (1997): ‘EEG data compression techniques’,IEEE Trans. Biomed. Eng.,44, pp. 105–114

    Article  Google Scholar 

  • Bernardo Cunha, M. (1992): ‘Evaluation of a statistical lossless compression algorithm for the Electroencephalogram’,Proc. IEEE EMBS, pp. 2734–2735

  • Dimolitas, S. andLister, P. F. (1986): ‘Waveform preserving encoders for the compression of EEG data’,Signal Process.,10, pp. 439–454

    Article  Google Scholar 

  • Gao, J. andZheng, Z. (1994): ‘Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series’,Phys. Rev. E.,49, pp. 3807–3814

    Article  Google Scholar 

  • Grassberger, P. andProcaccia, I. (1983): ‘Characterization of strange attractors’,Phys. Rev. Lett.,50, pp. 346–349

    Article  MathSciNet  Google Scholar 

  • Haggen, V. andOyetunji, O. B. (1984): ‘On the selection of subset autoregressive time series models’,J. Time Ser. Anal.,5, pp. 103–113

    Article  Google Scholar 

  • Kay, S. M. (1988): ‘Modern spectral estimation-theory and application’ (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  • Makhoul, J. M. (1975): ‘Linear prediction: a tutorial review’,Proc. IEEE, April, pp. 561–580

  • Mclochlin, C., Principe, J. C. andSmith, J. R. (1988): ‘A data compression algorithm for the electroencephalogram’,Int. J. Biomed. Comput.,22, pp. 83–95

    Article  Google Scholar 

  • Nave, G. andCohen, A. (1993): ‘ECG compression using long-term prediction’,IEEE Trans. Biomed. Eng.,40, pp. 877–885

    Article  Google Scholar 

  • Pradhan, N. andNarayana Dutt, D. (1994): ‘Data compression by linear prediction for storage and transmission of EEG signals’,Int. J. Biomed. Comput.,35, pp. 207–217

    Article  Google Scholar 

  • Takens, F. (1980): ‘Detecting strange attractors in turbulence’, inRand, D. A. andYoung, L. S. (Eds.): ‘Dynamic systems and turbulence, lecture notes in mathematics’,898 (Springer, Berlin), pp. 366–381

  • Townshend, B. (1992): ‘Nonlinear prediction of speech signals’, inCasdagli, M. andEubank, S. (Eds.): ‘Nonlinear modeling and forecasting, SFI studies in the science of complexity’,Proc. Vol. XII, pp. 433–453 (Addison-Wesley)

  • Vaz, F., Pacheco, O. andMartins Da Silva, A. (1991): ‘A Telemedicine application for EEG signal transmission’,Proc. IEEE EMBS, pp. 466–467

  • Wiggins, R. A. andRobinson, E. A. (1965): ‘Recursive solution to the multichannel filtering problem’,J. Geophys. Res.,70, pp. 1885–1891

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kavitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavitha, V., Narayana Dutt, D. A chaos-based model for low complexity predictive coding scheme for compression and transmission of electroencephalogram data. Med. Biol. Eng. Comput. 37, 316–321 (1999). https://doi.org/10.1007/BF02513306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513306

Keywords

Navigation