Skip to main content
Log in

Mechanical and electromotile characteristics of auditory outer hair cells

  • Cellular Engineering
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The passive and active properties of the cochlear outer hair cell are studied. The outer hair cell is currently considered the major candidate for the active component of mammalian hearing. Understanding of its properties may explain the amplification and sharp frequency selectivity of the ear. To analyse the cell behaviour, a model of a nonlinear anisotropic electro-elastic shell is used. Using the data from three independent experiments, where the mechanical strains of the cell are measured, estimates of the cell wall in-plane Young's moduli and Poisson's ratios are given, as well as estimates of three modes of bending stiffness. Based on these estimates and data from the microchamber experiment, where the cell is under the action of transmembrane potential changes, the characteristics of the outer hair cell active behaviour are found. These characteristics include the coefficients of the active force production per unit of the transmembrane potential change and limiting parameters of the electromotile response for extreme hyperpolarisation and depolarisation of the cell. The obtained estimates provide important information for the modelling of organ-level cochlear mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brownell, W. E., Bader, C. D., Bertrand, D., andde Ribaupierre, Y. (1985): ‘Evoked mechanical responses of isolated outer hair cells’,Science,224, pp. 194–196

    Article  Google Scholar 

  • Brownell, W. E. (1990): ‘Outer hair cell electromotility and otoacoustic emissions’,Ear & Hearing,11, pp. 82–92

    Article  Google Scholar 

  • Dallos, P., Hallworth, R. andEvans, B. N. (1993): ‘Theory of electrically driven shape changes of cochlear outer hair cells’,J. Neurophysiol.,70, pp. 299–323

    Google Scholar 

  • Dallos, P. (1996), ‘Overview: cochlear neurobiology’,inDallos, P., Popper, A. N., andFay, R. R. (Eds.): ‘The Cochlea’ (Springer). pp. 1–43

  • Frank, G., Hemmert, W., Wirth, M., andGummer, A. W. (1998): ‘High frequency limit of electrically induced length changes of mammalian outer hair cells’,inPopelka, G. R. (Ed): Abstracts of the 21 st Annual ARO Meeting’ (Des Moines, IA). p. 19

  • Hallworth, R. (1997): ‘Modulation of OHC force generation and stiffness by agents known to affect hearing’,inLewis, E. R., Long, G. R. Lyon, R. F., Narins, P. M., Steele, C. R., andHecht-Poinar, E. (Eds.): ‘Diversity in auditory mechanics’ (World Science Publ.). pp 524–530

  • Holley, M. C., andAshmore, J. F. (1988): ‘A cytoskeletal spring in cochlear outer hair cell’,Nature,335, pp. 635–637

    Article  Google Scholar 

  • Holley, M. C. (1996): ‘Outer hair cell motility’,inDallos, P., Popper, A. N., andFay, R. R. (Eds.): ‘The Cochlea’ (Springer). pp. 387–434

  • Iwasa, K. H., andChadwick, R. S. (1992): ‘Elasticity and active force generation of cochlea outer hair cells’,J. Acoust. Soc. Am.,92, pp. 3169–3173

    Article  Google Scholar 

  • Iwasa, K. H. (1994): ‘A membrane motor model for the fast motility of the outer hair cell’,J. Acoust. Soc. Am.,94, pp. 2216–2224

    Article  Google Scholar 

  • Iwasa, K. H., andAdachi, M. (1997): ‘Force generation in the outer hair cell of the cochlea’,Biophys. J.,73, pp. 546–555

    Article  Google Scholar 

  • Librescu, L. (1975): ‘Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures’ (Noordhoff, Leyden)

    MATH  Google Scholar 

  • Patuzzi, R. (1996); ‘Cochlear micromechanics and macromechanics’,inDallos, P., Popper, A. N., andFay, R. R. (Eds.): ‘The Cochlea’ (Springer). pp. 186–257

  • Ratnanather, J. T., Zhi, M., Brownell, W. E., andPopel, A. S. (1996): ‘The ratio of elestic moduli of cochlear outer hair cells derived from osmotic experiments’,J. Acoust. Soc. Am.,99, pp. 1025–1028

    Article  Google Scholar 

  • Russell, I. J., andSchauz, C. (1995): ‘Salicylate ototixicity: effects of the stiffness and electromotility of outer hair cells isolated from the guinea pig cochlea’,Aud. Neurosci.,1, pp. 309–320

    Google Scholar 

  • Santos-Sacchi, J. (1988): ‘Cochlear physiology’,inJahn, A. F., andSantos-Sacchi, J. (Eds.): ‘Physiology of the ear’ (Raven Press, New York), pp. 271–293

    Google Scholar 

  • Sit, S. P., Spector, A. A., Lue, A.J.-C., Popel, A. S., andBrownell, W. E. (1997): ‘Micropipet aspiration of the outer hair cell lateral wall’,Biophys. J.,72, pp. 2812–2819

    Article  Google Scholar 

  • Spector, A. A., Brownell, W. E., andPopel, A. S. (1996a): ‘A model of cochlea outer hair cell deformations in micropipette experiments: An analytical solution’,Ann. Biomed. Eng.,24, pp. 241–249

    Article  Google Scholar 

  • Spector, A. A., Brownell, W. E., andPopel, A. S. (1996b): ‘A model of elastic properties of cell membranes’,inBatra, R. C., andBeatty, M. F. (Eds.): ‘Contemporary research in mechanics and mathematics of materials’ (International Center for Numerical Methods in Engineering, Barcelona, Spain) pp. 55–66

    Google Scholar 

  • Spector, A. A., Brownell, W. E., andPopel, A. S. (1998a): ‘Elastic properties of the composite outer hair cell wall’Ann. Biomed. Eng.,26, pp. 157–165

    Article  Google Scholar 

  • Spector, A. A., Brownell, W. E., andPopel, A. S. (1998b): ‘Analysis of the micropipet experiment with the anisotropic outer hair cell wall’,J. Acoust. Soc. Am.,103, pp. 1001–1006

    Article  Google Scholar 

  • Tolomeo, J. A., andSteele, C. R. (1995): ‘Orthotropic properties of cochlear outer hair cell wall’,J. Acoust. Soc. Am.,97, pp. 3006–3011

    Article  Google Scholar 

  • Ulfendahl, M., Chan, E., McConnaughey, W. B., Prost-Domansky, S., andElson, E. (1998): ‘The Relationship between axial and transverse stiffness of auditory sensory cells suggests a common mechanical basis’,Pflügers Arch-Eur. J. Physiol.,436, pp. 9–15

    Article  Google Scholar 

  • Xue, S., Mountain, D. C., andHubbard, A. E. (1993): ‘Direct measurement of electrically-evoked basilar membrane motion’,inDuifhuis, H., Horst, J. W., vanDijk, P., andvanNetten, S. M. (Eds.): ‘Biophysics of hair cell sensory systems’ (World Scientific, Singapore). pp. 361–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Spector.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spector, A.A., Brownell, W.E. & Popel, A.S. Mechanical and electromotile characteristics of auditory outer hair cells. Med. Biol. Eng. Comput. 37, 247–251 (1999). https://doi.org/10.1007/BF02513294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513294

Keywords

Navigation