Medical & Biological Engineering & Computing

, Volume 37, Issue 2, pp 190–195 | Cite as

Evaluation of a lumped parameter model for isolated working rat hearts

  • G. Wright
  • O. V. Korchazhkina
  • S. Zhang


When a mechanical model of the rat aortic input impedance is perfused with a pulsatile pump, the computed values of the impedance components vary linearly with flow rate and are interactive. When the model is perfused by an isolated rat heart, the total load upon the left ventricle consists of the model and coronary impedances in parallel. Adenosine triphosphate induces changes in coronary impedance, and the redistribution of cardiac output from the model to the coronary circulation causes flow-related changes in the model impedance. Thus, the mechanical model does not provide a constant load for the isolated heart, because of variations in both the model and coronary impedances.


Lumped parameter vascular model Aortic input impedance Hydraulic power Isolated rat heart 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Elzinga, G., andWesterhof, N. (1973): ‘Pressure and flow generated by the left ventricle against different impedances’,Circulation Res.,32, pp. 178–186Google Scholar
  2. Home Office (1986): ‘Guidance on the operation of the animals (scientific procedures) act 1986’. (Her Majesty's Stationery Office, London)Google Scholar
  3. Kouwenhoven, H. J., Vergroesen, I., Han, Y., andSpaan, J. A. E. (1992): ‘Retrograde coronary flow is limited by time-varying elastance’,Am. J. Physiol.,263, pp. H484-H490Google Scholar
  4. McDonald, D. A. (1974): ‘Blood flow in arteries’ (Edward Arnold, London)Google Scholar
  5. Milnor, W. R. (1982): ‘Hemodynamics’ (Williams & Wilkins, Baltimore)Google Scholar
  6. Neely, J. R., Liebermeister, H., Battersby, E. J., andMorgan, H. E. (1967): ‘Effect of pressure development on oxygen consumption by isolated rat heart’,Am. J. Physiol.,212, pp. 804–814Google Scholar
  7. Noordergraaf, A. (1978): ‘Circulatory system dynamics’ (Academic Press, New YorkGoogle Scholar
  8. Spaan, J. A. E. (1995): ‘Mechanical determinants of myocardial perfusion’,Basic Res. Cardiol.,90, pp. 89–102CrossRefGoogle Scholar
  9. Westerhof, N., Elzinga, G., andSipkema, P. (1971): ‘An artificial arterial system for pumping hearts’,J. Appl. Physiol.,31, pp. 776–781Google Scholar
  10. Wright, G., Sum Ping, J. T. S., Campbell, C. S., andTobias, M. A. (1988): ‘Computation of haemodynamic power and input impedance in the ascending aorta of patients undergoing open heart surgery’,Cardiovasc. Res.,22, pp. 179–184CrossRefGoogle Scholar
  11. Wright, G. (1988): ‘The hydraulic power outputs of pulsatile and nonpulsatile cardiopulmonary bypass pumps’,Perfusion,3, pp. 251–262CrossRefGoogle Scholar
  12. Wright, G. (1989): ‘Factors affecting the pulsatile hydraulic performance of the Stockert roller pump’,Perfusion,4, pp. 187–195CrossRefGoogle Scholar
  13. Wright, G. (1991): ‘Effects of vasoactive drugs upon haemodynamic power and input impedance in normal rats’,Cardiovasc. Res.,25, pp. 923–929CrossRefGoogle Scholar
  14. Wright, G. (1992): ‘Engineering and physiological approaches to the study of cardiovascular function: science and pseudoscience?’,Cardiovasc. Res.,26, pp. 215–217CrossRefGoogle Scholar
  15. Wright, G. (1994): ‘Hemodynamic analysis could resolve the pulsatile blood flow controversy’,Ann. Thorac. Surg.,58, pp. 1199–1204CrossRefGoogle Scholar
  16. Wright, G. (1995): ‘The assessment of pulsatile blood flow’,Perfusion,10, pp. 135–140CrossRefGoogle Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  1. 1.Centre for Science & Technology in MedicineKeele UniversityUK

Personalised recommendations