Medical & Biological Engineering & Computing

, Volume 37, Issue 1, pp 125–129 | Cite as

Amphiphile-induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer

  • A. Iglič
  • H. Hägerstrand
Cellular Engineering


It is shown that an increase of the area difference between the outer and the inner membrane lipid layers of the skeleton-free membrane segment as a result of exogenously added amphiphilic molecules results in budding of the segment. The process reaches its final point when the segment attains the shape of the local maximal area difference, corresponding to formation of a spherical microexovesicle.


Vesiculation Amphiphile Membrane Elastic energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bukman, D. J., Yao, J. H. andWortis, M. (1996): ‘Stability of cylindrical vesicles under axial tension’,Phys. Rev. E,54, pp. 5463–5468CrossRefGoogle Scholar
  2. Deuling, H. J. andHelfrich, W. (1976): ‘The curvature elasticity of fluid membranes’,J. Phys. France,37, pp. 1335–1345CrossRefGoogle Scholar
  3. Evans, E.A. (1974): ‘Bending resistance and chemically induced moments in membrane bilayers’,Biophys. J.,14, pp. 923–931CrossRefGoogle Scholar
  4. Evans, E. andSkalak, R. (1980) ‘Mechanics and thermodynamics of biomembranes’, (CRC Press, Boca Raton, FL.)Google Scholar
  5. Fischer, T. M. (1993): ‘Mechanisms for determining the time scales in vesicle budding’,Phys. Rev. E,50, pp. 4156–4166CrossRefGoogle Scholar
  6. Gimsa, J. andRied, C. (1995). ‘Do band 3 protein conformational changes mediate shape changes of human erythrocytes’,Mol. Membr. Biol.,12, pp. 247–254CrossRefGoogle Scholar
  7. Helfrich W. (1973): ‘Elastic properties of lipid bilayers: theory and possible experiments’,Z. Naturforsch.,28C, pp. 693–703Google Scholar
  8. Hägerstrand, H. andIsomaa B. (1989): ‘Vesiculation induced by amphiphiles in erythrocytes’,Biochim. Biophys. Acta,982, pp. 179–186CrossRefGoogle Scholar
  9. Hägerstrand, H. andIsomaa B. (1994): ‘Lipid and protein composition of exovesicles released from human erythrocyte following treatment with amphiphiles’,Biochim. Biophys. Acta,1190, pp. 409–415CrossRefGoogle Scholar
  10. Iglič, A. andHägerstrand, H. (1996): ‘Membrane shear elasticity and depletion of membrane skeleton in red blood cell vesicles’ inCerrolaza, M., Jugo, D. andBrebbia, C. A. (Eds): ‘Simulation modelling in bioengineering’. (Computational Mechanics Publications, Southampton, Boston) pp. 109–118Google Scholar
  11. Iglič, A., Kralj-Iglič, V. andHägerstrand, H. (1998a): ‘Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane’,Med. Biol. Eng. Comput.,36, pp. 251–255CrossRefGoogle Scholar
  12. Iglič, A., Hägerstrand, H., Kralj-Iglič, V. andBobrowska-Hägerstrand M. (1998b): ‘A possible physical mechanism of red blood cell vesiculation obtained by incubation at high pH’,J. Biomech.,31, pp. 151–156CrossRefGoogle Scholar
  13. Iglič, A., Svetina, S. andŽekš, B. (1995): ‘Depletion of membrane skeleton in red blood cell vesicles‘Biophys. J.,69, pp. 274–279CrossRefGoogle Scholar
  14. Israelachvili, J. N., Mitchell, D. J. andNinham, B. W. (1976): ‘Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers’,J. Chem. Soc. Faraday Trans. II,72, pp. 1525–1568CrossRefGoogle Scholar
  15. Isomaa, B., Hägerstrand, H. andPaatero, G. (1987): ‘Shape transformations induced by amphiphiles in erythrocytes‘Biochim. Biophys. Acta,899, pp. 93–103CrossRefGoogle Scholar
  16. Kozlov, M. M., Chernomordik, L. V. andMarkin, V. S. (1990): ‘A mechanism of formation of protein-free regions in the red cell membrane: the rupture of the membrane skeleton‘J. Theor. Biol.,144, pp. 347–365CrossRefGoogle Scholar
  17. Kralj-Iglič, V., Svetina, S. andŽekš, B. (1996): ‘Shapes of bilayer vesicles with membrane embedded molecules‘Eur. Biophys. J.,24, pp. 311–321CrossRefGoogle Scholar
  18. Leonards, K. S. andOhki, S. (1983): ‘Isolation and characterization of large (0.5–1.0 mm) cytoskeleton-free vesicles from human and rabbit erythrocytes’Biochim. Biophys. Acta,728, pp. 383–393CrossRefGoogle Scholar
  19. Lipowsky, R. (1993): ‘Domain induced budding of fluid membranes’Biophys. J.,64, pp. 1133–1138CrossRefGoogle Scholar
  20. Liu, S. C., Derick, L. H., Duquette, M. A. andPalek, J. (1989): ‘Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts’,Eur. J. Cell Biol.,49, pp. 358–365Google Scholar
  21. Miao, L., Seifert, U., Wortis, M. andDöbereiner, H. G. (1994): ‘Budding transitions of fluid-bilayer vesicles; the effect of area difference elasticity’Phys. Rev. E,49, pp. 5389–5407CrossRefGoogle Scholar
  22. Mohandas, N., andEvans, E. (1994): ‘Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects’,Annu. Rev. Biophys. Biomol. Struct.,23, pp. 787–818CrossRefGoogle Scholar
  23. Saxton, M. J. (1992): ‘Gaps in the erythrocyte membrane skeleton: a stretched net model’,J. Theor. Biol.,155, pp. 517–536CrossRefGoogle Scholar
  24. Seifert, U. (1997): ‘Configurations of fluid membranes and vesicles’Adv. in Phys.,46, pp. 13–137CrossRefGoogle Scholar
  25. Sheetz, M. P., andSinger, S. J. (1974): ‘Biological membranes as bilayer couples. A mechanism of drug-erythrocyte interactions’,Proc. Natl. Acad. Sci. USA,71, pp. 4457–4461CrossRefGoogle Scholar
  26. Sikorski, A. andBialkowska, K. (1996): ‘Interactions of spectrin with membrane intrinsic domain’,Cell. Mol. Biol. Lett.,1, pp. 97–104Google Scholar
  27. Steck, T. L. (1989): ‘Red cell shape’ inStein, W. andBronner, F. (Eds): ‘Cell shape: determinants, regulation and regulatory role’ (Academic Press, New York), pp. 205–246Google Scholar
  28. Svetina, S. andŽekš B. (1989): ‘Membrane bending energy and shape determination of phospholipid vesicles and red blood cells’,Eur. Biophys. J.,17, pp. 101–111CrossRefGoogle Scholar
  29. Svetina, S. andŽekš, B. (1996): ‘Elastic properties of closed bilayer membranes and the shapes of giant phospholipid vesicles’, inLasic, D. D., andBarenholz, Y. (Eds): ‘Handbook of nonmedical applications of liposomes’ (CRC Press, Boca Raton, FL), pp. 13–42Google Scholar
  30. Waugh, R. E. (1996): ‘Elastic energy of curvature driven bump formation of red blood cell membrane’,Biophys. J.,70, pp. 1027–1035CrossRefGoogle Scholar
  31. Wiese, W., Harbich, W. andHelfrich, W. (1992): ‘Budding of lipid bilayer vesicles and flat membranes’,J. Phys. Condens. Matter,4, pp. 1647–1657CrossRefGoogle Scholar
  32. Žekš, B., Iglič, A., andSvetina, S. (1990): ‘Bilayer membrane models and a theoretical analysis of the vesiculation process’,Suppl. Minerva Biotechnologica,2, p. 47Google Scholar
  33. Zarda, P. R., Chien, S. andSkalak, R. (1977): ‘Elastic deformations of red blood cells.’J. Biomechanics,10, pp. 211–221CrossRefGoogle Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of BiologyÅbo Akademi UniversityÅbo/TurkuFinland

Personalised recommendations