Advertisement

Ukrainian Mathematical Journal

, Volume 50, Issue 8, pp 1212–1223 | Cite as

Spectral theory of some matrix differential operators of mixed order

  • A. Yu. Konstantinov
Article

Abstract

We develop spectral and scattering theory for one class of self-adjoint matrix operators of mixed order.

Keywords

Spectral Theory Matrix Operator Essential Spectrum Wave Operator Operator Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. V. Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov, “The essential spectrum of some matrix operators,” Math. Nachr., 167, 5–20 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. A. Shkalikov, “On the essential spectrum of matrix operators,” Mat. Zametki, 58, 945–949 (1995).MathSciNetGoogle Scholar
  3. 3.
    M. Faierman, R. Mennicken, and M. Möller, “A boundary eigenvalue problem for a system of partial differential operators occurring in magnetohydrodynamics,” Math. Nachr., 173, 141–167 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H. Langer and M. Möller, “The essential spectrum of a nonelliptic boundary-value problem,” Math. Nachr., 178, 233–248 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Yu. Konstantinov, “Spectral and scattering theory of some matrix operators related to Schrödinger equations with potentials depending rationally on the spectral parameter,” Meth. Function. Anal. Topology, 2, No. 3, 4, 69–77 (1996).zbMATHMathSciNetGoogle Scholar
  6. 6.
    A. Yu. Konstantinov, “Spectral analysis of one class of matrix differential operators,” Function, Anal. Appl., 31, No. 3, 209–211 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. Adamyan, H. Langer, R. Mennicken, and J. Saurer, “Spectral components of self-adjoint block operator matrices with unbounded entries,” Math. Nachr., 178, 43–80 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Mennicken and A. A. Shkalikov, “Spectral decomposition of symmetric operator matrices,” Math. Nachr., 179, 259–273 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    V. Adamyan and H. Langer, “Spectral properties of a class of rational operator valued functions,” J. Oper. Theory, 33, 259–277 (1995).MathSciNetGoogle Scholar
  10. 10.
    E. Mourre, “Absence of a singular continuous spectrum for certain self-adjoint operators,” Commun. Math. Phys., 78, 391–408 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. A. Perry, I. M. Sigal, and B. Simon, “Spectral analysis of N-body Schrödinger operators,” Ann. Math., 114, 519–567 (1981).CrossRefMathSciNetGoogle Scholar
  12. 12.
    W. Amrein, A. Boutet de Monvel, and V. Georgescu, C 0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Birkhäuser, Basel (1996).Google Scholar
  13. 13.
    A. Boutet de Monvel, V. Georgescu, and M. Mantoiu, “Locally smooth operators and the limiting absorption principle for N-body Hamiltonians,” Rev. Math. Phys., 5, No. 1, 105–189 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Boutet de Monvel-Berthier and V. Georgescu, “Spectral and scattering theory by the conjugate operator method,” Alg. Analiz, 4, No. 3, 79–116 (1992).zbMATHGoogle Scholar
  15. 15.
    D. R. Yafaev, “Remarks on spectral theory for multiparticle Schrödinger operators,” Zap. Nauchn. Sem. LOMI, 133, 277–298 (1984).zbMATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. Yu. Konstantinov
    • 1
  1. 1.Kiev UniversityKiev

Personalised recommendations