Ukrainian Mathematical Journal

, Volume 49, Issue 12, pp 1783–1790 | Cite as

Many-dimensional Dirichlet and Tricomi problems for one class of hyperbolic-elliptic equations

  • S. A. Aldashev


For the generalized many-dimensional Lavrent’ev-Bitsadze equation, we prove the unique solvability of the Dirichlet and Tricomi problems. We also establish the existence and uniqueness of a solution of the Dirichlet problem in the hyperbolic part of a mixed domain.


Dirichlet Problem Half Space Unique Solvability High Transcendental Function Mixed Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Pul’kin, “The singular Tricomi problem”, in: Proceedings of the Third All-Union Mathematical Congress [in Russian], Vol. 1 (1956), pp. 65–66.Google Scholar
  2. 2.
    A. V. Bitsadze, “On the problem of equations of mixed type in many-dimensional domains”, Dokl. Akad. Nauk SSSR. 110, No. 6, 901–902 (1956).zbMATHMathSciNetGoogle Scholar
  3. 3.
    G. D. Karatoprakliev, “On the uniqueness of a solution of certain boundary-value problems for equations of mixed type and hyperbolic equations in space”, Differents. Uravn., 18, No. 1, 59–63 (1982).MathSciNetGoogle Scholar
  4. 4.
    S. A. Aldashev, “Tricomi problems for the many-dimensional Lavrent’ev-Bitsadze equation”, Ukr. Mat. Zh., 43, No. 4, 568–572 (1991).CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. A. Aldashev, “On the well-posedness of the Tricomi problem for the many-dimensional Lavrent’ev-Bitsadze equation”, Dokl. Akad. Nauk Ukr., No. 3, 5–7 (1992).Google Scholar
  6. 6.
    S. A. Aldashev, “On the well-posedness of the Dirichlet problem for the many-dimensional Lavrent’ ev-Bitsadze wave equation”, Dokl. Akad. Nauk Resp. Kazakhstan, No. 1, 35–37 (1995).Google Scholar
  7. 7.
    S. A. Aldashev, Boundary-Value Problems for Many-Dimensional Hyperbolic and Mixed Equations [in Russian]. Gylym, Almaty (1994).Google Scholar
  8. 8.
    S. G. Mikhlin, Many-Dimensional Singular Integrals and Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  9. 9.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian]. Nauka, Moscow (1976).Google Scholar
  10. 10.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. A. Aldashev

There are no affiliations available

Personalised recommendations