Skip to main content

Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models

Abstract

Computer simulation of pulsatile non-Newtonian blood flow has been carried out in different human carotid artery bifurcation models. In the first part of the investigation, two rigid walled models are analysed, differing in the bifurcation angle (wide angle and acute angle bifurcation) and in the shape of both the sinus (narrow and larger sinus width) and the bifurcation region (small and larger rounding of the flow divider), in order to contribute to the study of the geometric factor in atherosclerosis. The results show a significant difference in the wall shear stress and in the flow separation. Flow recirculation in the sinus is much more pronounced in the acute angle carotid. An important factor in flow separation is the sinus width. In the second part of the study, flow velocity and wall shear stress distribution have been analysed in a compliant carotid artery bifurcation model. In the mathematical model, the non-Newtonian flow field and the idealised elastic wall displacement are coupled and calculated iteratively at each time step. Maximum displacement of approximately 6% of the diastolic vessel diameter occurs at the side wall of the bifurcation region. The investigation demonstrates that the wall distensibility alters the flow feld and the wall shear stress during the systolic phase. Comparison with corresponding rigid wall results shows that flow separation and wall shear stress are reduced in the distensible wall model.

This is a preview of subscription content, access via your institution.

References

  • Anayiotos, A. (1990): ‘Fluid dynamics at a compliant bifurcation model,’ PhD Thesis, Georgia Institute of Technology, Atlanta

  • Bharadvaj, B. K., Mabon, R. F., andGiddens, D. P. (1982a): ‘Steady flow in a model of the human carotid bifurcation. Part I—Flow visualization,’J. Biomech.,15, pp. 349–362

    Article  Google Scholar 

  • Bharadvaj, B. K., Mabon, R. F., andGiddens, D. P. (1982b): ‘Steady flow in a model of the human carotid bifurcation. Part II—Laser Doppler anemometer measurements,’J. Biomech.,15, pp. 363–378

    Article  Google Scholar 

  • Caro, C. G., Fitz-Gerald, J. M., andSchroter, R. C. (1971): ‘Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis,’Proc. Roy. Soc. Lond.,177, pp. 109–159

    Article  Google Scholar 

  • Cho, Y. I., andKensey, K. R. (1991): ‘Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1. steady flows,’Biorheol.

  • Desyo, D. (1990): ‘Radiogrammetric analysis of carotid bifurcation: Hemodynamic-atherogenetic repercussions on surgical practice,’in Liepsch, D. (Ed.): ‘Biofluid mechanics’ (Springer-Verlag, Berlin) pp. 45–56

    Google Scholar 

  • Friedman, M. H., Deters, O. J., Mark, F. F., Bargeson, C. B., andHutchins, G. M. (1983): ‘Arterial geometry affects hemodynamics—a potential risk factor for atherosclerosis,’Atherosclerosis,46, pp. 225–231

    Article  Google Scholar 

  • Friedman, M. H., Bargeson, C. B., Deters, O. J., Hutchins, G. M., andMark, F. F. (1987): ‘Correlation between wall shear and intimal thickness at a coronary artery branch,’Atherosclerosis,68, pp. 27–33

    Article  Google Scholar 

  • Glagov, S., Zarins, C., Giddens, D. P., andKu, D. N. (1988): ‘Hemodynamics and atherosclerosis,’Arch. Pathol. Lab. Med.,112, pp. 1018–1031

    Google Scholar 

  • Hilbert, D. (1987a): ‘An efficient Navier-Stokes solver and its application to fluid flow in elastic tubes’ in ‘Numerical methods’. Colloquia Societatis János Bolyai, (North-Holland)50, pp. 423–431

    Google Scholar 

  • Hilbert, D. (1987b): ‘Ein Finite Elemente-Aufspaltungsverfahren zur numerischen Lösung der Navier-Stokes Gleichungen und seine Anwendung auf die Strömung in Rohren mit elastischen Wänden.’ Dissertation, Technical University of Graz

  • Horsten, J. B. A. M., van Steenhoven, A. A., andvan Dongen, M. E. H. (1989): ‘Linear propagation of pulsatile waves in visco-elastic tubes’J. Biomech.,22, pp. 477–484

    Article  Google Scholar 

  • Ku, D. N., Giddens, D. P., Zarins, C. K., andGlagov, S. (1985): ‘Pulsatile flow and atherosclerosis in the human carotid bifuraction,’Arteriosclerosis,5, pp. 293–302

    Google Scholar 

  • Ku, D. N., andGiddens, D. P. (1987): ‘Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation’,J. Biomech.,20, pp. 407–421

    Article  Google Scholar 

  • Ku, D. N. (1988): ‘A review of carotid duplex scanning’,Echocardiog.,5, pp. 53–69

    Google Scholar 

  • Liepsch, D., andMoravec, S. (1984): ‘Pulsatile flow of non-Newtonian fluid in distensible models of human arteries’,Biorheol.,21, pp. 571–586

    Google Scholar 

  • Mark, F. F., Bargeson, C. B., Deters, O. J., andFriedman, M. H. (1989): ‘Variations in geometry and shear distribution in casts of human aortic bifurcations’,J. Biomech.,22, pp. 577–582

    Article  Google Scholar 

  • van Merode, T., Lodder, J., Smeets, F. A. M., Hoeks, A. P. G. andReneman, R. S. (1988): ‘Accurate noninvasive method to diagnose minor atherosclerotic lesions in carotid artery bulb,’Stroke,20, pp. 1336–1339

    Google Scholar 

  • Motomiya, M., andKarino, T. (1984): ‘Flow patterns in the human carotid artery bifurcation’,Stroke,15, pp. 50–56

    Google Scholar 

  • Nerem, R. M., andCornhill, J. F. (1980): ‘The role of fluid mechanics in artherogenesis’,ASME J. Biomech. Eng.,102, pp. 181–189

    Article  Google Scholar 

  • Nerem, R. M., andSeed, W. A. (1983): ‘Coronary artery geometry and its fluid mechanical implications’, Proc. Symp. on Fluid Dynamics as a Localizing Factor for Atherosclerosis (Springer Verlag, Berlin) pp. 51–59

    Google Scholar 

  • Nerem, R. M. (1984): ‘Atherogenesis: hemodynamics, vascular geometry, and the endothelium’,Biorheol.,21, pp. 565–569

    Google Scholar 

  • Perktold, K. (1987): ‘On numerical solution of three-dimensional flow problems’, Ber Math.-Stat. Sektion, Forschungsges. Joanneum Graz, 280, Graz

    Google Scholar 

  • Perktold, K., andResch, M. (1990): ‘Numerical flow studies in human carotid bifurcations: basic discussion of the geometric factor in atherogenesis’,J. Biomed. Eng.,12, pp. 111–123

    Article  Google Scholar 

  • Perktold, K., Nerem, R. M., andPeter, R. O. (1991a): ‘A numerical calculation of flow in a curved tube model of the left main coronary artery’,J. Biomech.,24, pp. 175–189

    Article  Google Scholar 

  • Perktold, K., Peter, R. O., andResch, M. (1991b): ‘Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation’,J. Biomech., pp. 409–420

  • Perktold, K., Resch, M., andFlorian, H. (1991c): ‘Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model’,Trans. ASME J. Biomech. Ēng.,113, pp. 464–475

    Google Scholar 

  • Perktold, K., Peter, R. O., Resch, M., andLangs, G. (1991d): ‘Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: Numerical study of flow phenomena under different bifurcation angle’,J. Biomed. Eng.,13, pp. 507–515

    Article  Google Scholar 

  • Perktold, K., Peter, R. O., andGürtl, R. (1991e): ‘Numerical analysis of pulsatile local flow characteristics and wall shear stresses in compliant carotid artery bifurcation models’, Med. Razgl.,30, Suppl. 1, pp. 101–104

    Google Scholar 

  • Perktold, K., Hilbert, D., andSiekman, J. (1992): ‘Numerische Untersuchung der pulsatilen Strömung eines nicht-Newtonschen Fluides in einem elastischen Rohr’,ZAMM—Z. angew. Math. Mech.,72, pp. T373-T377

    Google Scholar 

  • Reneman, R. S., van Merode, T., Hide, P., andHoeks, A. P. G. (1985): ‘Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages,’Circ,71, pp. 500–509

    Google Scholar 

  • Reuderink, P. (1991): ‘Analysis of the flow in a 3D distensible model of the carotid artery bifurcation’. Ph.D. Thesis, Eindhoven Institute of Technology, The Netherlands

    Google Scholar 

  • Rindt, C. C. M., van Steenhoven, A. A., andReneman, R. S. (1989). ‘Analysis of the three-dimensional flow field in the carotid artery bifurcation’. Ph.D. Thesis, Eindhoven Institute of Technology, The Netherlands

    Google Scholar 

  • Rindt, C. C. M., van Steenhoven, A. A., Janssen, J. D., Reneman, R. S. andSegal, A. (1990): ‘A numerical analysis of steady flow in a 3D-model of the carotid artery bifurcation’,J. Biomech.,23, pp. 461–473

    Article  Google Scholar 

  • Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiura, V. S., Mabon, R. F., andGlagov, S. (1983): ‘Carotid bifurcation atherosclerosis’,Circ. Res.,53, pp. 502–514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perktold, K., Thurner, E. & Kenner, T. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med. Biol. Eng. Comput. 32, 19–26 (1994). https://doi.org/10.1007/BF02512474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512474

Keywords

  • Carotid artery bifurcation
  • Geometric factor in atherogenesis
  • Haemodynamics
  • Numerical flow analysis
  • Rigid wall and compliant wall model