High order explicit methods for parabolic equations

  • Alexei A. Medovikov


This paper discusses explicit embedded integration methods with large stability domains of order 3 and 4. The high order produces accurate results, the large stability domains allow some reasonable stiffness, the explicitness enables the method to treat very large problems, often space discretization of parabolic PDEs, and the embedded formulas permit an efficient stepsize control. The construction of these methods is achieved in two steps: firstly we compute stability polynomials of a given order with optimal stability domains, i.e., possessing a Chebyshev alternation; secondly we realize a corresponding explicit Runge-Kutta method with the help of the theory of composition methods.

AMS subject classification

65L20 65M20 

Key words

Explicit Runge-Kutta methods stiff ordinary differential equations parabolic equations approximation by polynomials 


  1. 1.
    S. N. Bernstein,Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, in Professées á la Sorbonne, Paris, 1926.Google Scholar
  2. 2.
    E. Hairer, S. P. Nørsett, and G. Wanner,Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Springer-Verlag, Berlin, 1993.MATHGoogle Scholar
  3. 3.
    E. Hairer and G. Wanner,Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.MATHGoogle Scholar
  4. 4.
    P. J. van der Houwen and J. Kok,Numerical solution of a maximal problem, Report TW 124/71, Mathematical Center, Amsterdam, 1971.Google Scholar
  5. 5.
    P. J. van der Houwen,Construction of Integration Formulas for Initial Value Problems, North-Holland, Amsterdam, 1977.MATHGoogle Scholar
  6. 6.
    P. J. van der Houwen and B. P. Sommeijer,On the internal stability of explicit m-stage Runge-Kutta methods for large m-values, Z. Angew. Math. Mech., 60 (1980), pp. 479–485.MATHMathSciNetGoogle Scholar
  7. 7.
    V. I. Lebedev and A. A. Medovikov,Methods of second order accuracy with variable time steps, Izvestiya Vuzov, Matematika, N10, Russia, 1995.Google Scholar
  8. 8.
    V. I. Lebedev,How to solve stiff systems of differential equations by explicit methods, in Numerical Methods and Applications, CRC Press, Boca Raton, 1994, pp. 45–80.Google Scholar
  9. 9.
    V. I. Lebedev,Zolotarev polynomials and extremum problem, Russ. J. Numer. Anal. Math. Modelling. V. 9, N 3 (1994), pp. 191–314.Google Scholar
  10. 10.
    V. I. Lebedev,A new method for determing the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. Part I, Part II, Russ. J. Numer. Anal. Math. Modelling. V. 8, N 3 (1993), pp. 195–222; V. 8, N 5 (1993), pp. 397–426.MATHCrossRefGoogle Scholar
  11. 11.
    V. I. Lebedev,Explicit difference schemes with time-variable steps for the solution of stiff system of equations, Preprint DNM AS USSR N177, 1987.Google Scholar
  12. 12.
    H. Lomax,On the construction of highly stable, explicit numerical methods for integrating coupled ordinary differential equations with parasitic eigenvalues, NASA Technical Note NASATND/4547, 1968.Google Scholar
  13. 13.
    A. A. Markov,Lectures on the functions of least deviation, 1892; in Selected Works, OGIZ, Moscow, 1948, pp. 244–291, (in Russian).Google Scholar
  14. 14.
    A. A. Medovikov,Explicit and explicit-implicit methods of solution of unstationary problems, PhD Thesis, INM, Moscow, 1992.Google Scholar
  15. 15.
    C. L. Metzger,Méthodes de Runge-Kutta de rang supérieur à l'orde, Thèse (troisième cycle), Université de Grenoble, France, 1967.Google Scholar
  16. 16.
    W. Riha,Optimal stability polynomials, Computing, 9 (1972), pp. 37–43.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Szegö,Orthogonal Polynomials, Amer. Math. Soc., New York, 1949.Google Scholar
  18. 18.
    P. L. Chebyshev,On the problems about minimal values connected with appropriate representation of functions, Mem. Acad. St. Petersburg (1859); Collected Works, Vol. 2, GITTL, Moscow-Leningrad, 1947 (in Russian); Oeuvres, Vol. I, p. 271.Google Scholar
  19. 19.
    P. L. Chebyshev,On the functions slightly deviating from zero for certain values of the variables, Prilojenie k XI tomy Zapisok Imperatorskoi Akademii nauk N3 (1881);Collected Works, Vol. 3, GITTL, Moscow-Leningrad, 1948, p. 108; Oeuvres, Vol. II, p. 373 (in Russian).Google Scholar
  20. 20.
    J. G. Verwer,A class of stabilized three-step Runge-Kutta methods for the numerical integration of parabolic equations, J. Comput. Appl. Math., 3 (1977), pp. 155–166.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. G. Verwer,Explicit Runge-Kutta methods for parabolic partial differential equations, 1996. To appear in the Runge-Kutta centennial special issue of Appl. Numer. Math.Google Scholar
  22. 22.
    E. I. Zolotarev,On applying elliptic functions to the study of functions of least and greatest deviation from zero, Zapiski Sankt-Peterburgskoi Akademii Nauk XXX, No 5 (1887), pp. 1–59 (in Russian).Google Scholar

Copyright information

© Swets & Zeitlinger 1998

Authors and Affiliations

  • Alexei A. Medovikov
    • 1
  1. 1.Institute of Numerical MathematicsMoscowRussia

Personalised recommendations