Genetic and molecular mechanisms of pattern formation inArabidopsis flower development

  • Elliot M. Meyerowitz
JPR Symposium


One of the great unanswered questions in the biology of both plants and animals is “How do simple groups of embryonic cells develop into complex and highly structured organisms, or parts of organisms?” The answers are only beginning to be known; the processes involved include establishment of positional information, and its interpretation into patterns of cell division and cellular differentiation. One remarkable and attractive example of the formation of a complex structure from a simple group of cells is the development of a flower, with its characteristic types, numbers and patterns of floral organs. Because of the ease with which plants (especially the plantArabidopsis thaliana) can be manipulated in the laboratory, flowers provide a unique opportunity to learn some of the fundamental rules of development.

Key words

Arabidopsis thaliana Flower development Homeotic genes MADS-box genes Pattern formation 


  1. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. andTasaka, M. 1997. Genes involved in organ separation in Arabidopsis: An analysis of thecup-shaped cotyledon mutant. Plant Cell9: 841–857.PubMedCrossRefGoogle Scholar
  2. Angenent, G.C., Franken, J., Busscher, M., Colombo, L. andvan Tunen, A.J. 1993. Petal and stamen formation in petunia is regulated by the homeotic genefbp1. Plant J.4: 101–112.PubMedCrossRefGoogle Scholar
  3. Aoyama, T. andChua, N.-H. 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J.11: 605–612.PubMedCrossRefGoogle Scholar
  4. Bateson, W. 1894. Materials for the Study of Variation. Cambridge, Cambridge University Press.Google Scholar
  5. Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. andSmyth, D.R. 1993. Control of flower development inArabidopsis thaliana byAPETALA1 and interacting genes. Development119: 721–743.Google Scholar
  6. Bowman, J.L., Smyth, D.R. andMeyerowitz, E.M. 1989. Genes directing flower development inArabidopsis. Plant Cell1: 37–52.PubMedCrossRefGoogle Scholar
  7. Bowman, J.L., Smyth, D.R. andMeyerowitz, E.M. 1991. Genetic interactions among floral homeotic genes ofArabidopsis. Development112: 1–20.PubMedGoogle Scholar
  8. Bowman, J.L., Yanofsky, M.F. and Meyerowitz, E.M. 1988.Arabidopsis thaliana: a review.In B.J. Miflin, ed., Oxford Surveys of Plant Molecular and Cell Biology, vol. 5, Oxford, pp. 57–87.Google Scholar
  9. Bradley, D., Carpenter, R., Sommer, H., Hartley, N. andCoen, E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at theplena locus of Antirrhinum. Cell72: 85–95.PubMedCrossRefGoogle Scholar
  10. Coen, E.S. 1991. The role of homeotic genes in flower development and evolution. Annu. Rev. Plant Physiol. Plant Mol. Biol.42: 241–279.CrossRefGoogle Scholar
  11. Coen, E.S. andMeyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature353: 31–37.PubMedCrossRefGoogle Scholar
  12. Dalman, F.C., Scherrer, L.C., Taylor, L.P., Akil, H. andPratt, W.B. 1991. Localisation of the 90 kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J. Biol. Chem.266: 3482–3490.PubMedGoogle Scholar
  13. Davies, B., Dirosa, A., Eneva, T., Saedler, H. andSommer, H. 1996. Alteration of tobacco floral organ identity by expression of combinations ofAntirrhinum MADS-Box genes. Plant J.10: 663–677.PubMedCrossRefGoogle Scholar
  14. Drews, G.N., Bowman, J.L. andMeyerowitz, E.M. 1991. Negative regulation of the Arabidopsis homeotic geneAGAMOUS by theAPETALA2 product. Cell65: 991–1002.PubMedCrossRefGoogle Scholar
  15. Goodrich, J., Puangsomlee, P., Long, D., Martin, M., Meyerowitz, E.M. andCoupland, G. 1997.CURLY LEAF: A Polycomb group gene that regulates homeotic gene expression inArabidopsis. Nature386: 44–51.PubMedCrossRefGoogle Scholar
  16. Goto, K. andMeyerowitz, E.M. 1994. Function and regulation of theArabidopsis floral homeotic genePISTILLATA. Genes Devel.8: 1548–1560.PubMedGoogle Scholar
  17. Gustafson-Brown, C., Savidge, B. andYanofsky, M.F. 1994. Regulation of the Arabidopsis floral homeotic geneAPETALA1. Cell76: 131–143.PubMedCrossRefGoogle Scholar
  18. Huala, E. andSussex, I.M. 1992.LEAFY interacts with floral homeotic genes to regulateArabidopsis floral development. Plant Cell4: 901–913.PubMedCrossRefGoogle Scholar
  19. Jack, T., Brockman, L.L. andMeyerowitz, E.M. 1992. The homeotic geneAPETALA3 ofArabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell68: 683–697.PubMedCrossRefGoogle Scholar
  20. Jack, T., Sieburth, L. andMeyerowitz, E.M. 1997. Targeted misexpresion ofAGAMOUS in whorl 2 ofArabidopsis flowers. Plant J.11: 825–839.PubMedCrossRefGoogle Scholar
  21. Jofuku, K.D., den Boer, B.G.W., Van Montagu, M. andOkamuro, J.K. 1994. Control of Arabidopsis flower and seed development by the homeotic geneAPETALA2. Plant Cell6: 1211–1225.PubMedCrossRefGoogle Scholar
  22. Krizek, B.A. andMeyerowitz, E.M. 1996a. TheArabidopsis homeotic genesAPETALA3 andPISTILLATA are sufficient to provide the B class organ identity function. Development122: 11–22.PubMedGoogle Scholar
  23. Krizek, B.A. andMeyerowitz, E.M. 1996b. Mapping the protein regions responsible for the functional specificities of theArabidopsis MADS domain organ-identity proteins. Proc. Natl. Acad. Sci. USA93: 4063–4070.PubMedCrossRefGoogle Scholar
  24. Lee, I., Wolfe, D.S., Nilsson, O. andWeigel, D. 1997.A LEAFY coregulator encoded byUNUSUAL FLORAL ORGANS. Curr. Biol.7: 95–104.PubMedCrossRefGoogle Scholar
  25. Levin, J.Z. andMeyerowitz, E.M. 1995.UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell7: 529–548.PubMedCrossRefGoogle Scholar
  26. Liang, P. andPardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science257: 967–971.PubMedCrossRefGoogle Scholar
  27. Liu, Z. andMeyerowitz, E.M. 1995.LEUNIG regulatesAGAMOUS expression inArabidopsis flowers. Development121: 975–991.PubMedGoogle Scholar
  28. Lloyd, A.M., Schena, M., Walbot, V. andDavis, R. 1994. Epidermal cell fate determination inArabidopsis: Patterns defined by a steroid-inducible regulator. Science266: 436–439.PubMedCrossRefGoogle Scholar
  29. Mandel, M.A., Bowman, J.L., Kempin, S.A., Ma, H., Meyerowitz, E.M. andYanofsky, M.F. 1992b. Manipulation of flower structure in transgenic tobacco. Cell71: 133–143.PubMedCrossRefGoogle Scholar
  30. Mandel, M.A., Gustafson-Brown, C., Savidge, B. andYanofsky, M.F. 1992a. Molecular characterization of theArabidopsis floral homeotic geneAPETALA1. Nature360: 273–277.PubMedCrossRefGoogle Scholar
  31. Mandel, M.A. andYanofsky, M.F. 1995. A gene triggering flower formation in Arabidopsis. Nature377: 522–524.PubMedCrossRefGoogle Scholar
  32. Meyerowitz, E.M. 1987.Arabidopsis thaliana. Ann. Rev. Genet.21: 93–111.PubMedCrossRefGoogle Scholar
  33. Meyerowitz, E.M., Bowman, J.L., Brockman, L.L., Drews, G.N., Jack, T., Sieburth, L.E. andWeigel, D. 1991. A genetic and molecular model for flower development inArabidopsis thaliana. Development112: suppl. 1, 157–168.Google Scholar
  34. Meyerowitz, E.M. andPruitt, R.E. 1985.Arabidopsis thaliana and plant molecular genetics. Science229: 1214–1218. [Reprinted in Biotechnology: The Renewable Frontier, ed. D.E. Koshland, Jr., AAAS, pp. 311–320, 1986].CrossRefPubMedGoogle Scholar
  35. Meyerowitz, E.M., Smyth, D.R. andBowman, J.L. 1989. Abnormal flowers and pattern formation in floral development. Development106: 209–217.Google Scholar
  36. Mizukami, Y. andMa, H. 1992. Ectopic expression of the floral homeotic geneAGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell71: 119–131.PubMedCrossRefGoogle Scholar
  37. Pnueli, L., Hareven, D., Rounsley, S.D., Yanofsky, M.F., andLifshitz, E. 1994. Isolation of the tomatoAGAMOUS geneTAG1 and analysis of its homeotic role in transgenic plants. Plant Cell6: 163–173.PubMedCrossRefGoogle Scholar
  38. Riechmann, J.-L., Krizek, B.A. andMeyerowitz, E.M. 1996. Dimerization specificity ofArabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proc. Natl. Acad. Sci. USA93: 4793–4798.PubMedCrossRefGoogle Scholar
  39. Riechmann, J.L. andMeyerowitz, E.M. 1997. MADS domain proteins in plant development. Biol. Chem.378: 1079–1101.PubMedCrossRefGoogle Scholar
  40. Sablowski, R.W.M. andMeyerowitz, E.M. 1998. A homologue ofNO APICAL MERISTEM is an immediate target of the floral homeotic genesAPETALA3/PISTILLATA. Cell92: 93–103.PubMedCrossRefGoogle Scholar
  41. Schultz, E.A. andHaughn, G.W. 1991.LEAFY, a homeotic gene that regulates inflorescence development inArabidopsis. Plant Cell3: 771–781.PubMedCrossRefGoogle Scholar
  42. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. andSommer, H. 1990. Genetic control of flower development: homeotic genes inAntirrhinum majus. Science250: 931–936.CrossRefPubMedGoogle Scholar
  43. Simon, R., Igeño, M.I. andCoupland, G. 1996. Activation of floral meristem identity genes inArabidopsis. Nature384: 59–62.PubMedCrossRefGoogle Scholar
  44. Smyth, D.R., Bowman, J.L. andMeyerowitz, E.M. 1990. Early flower development inArabidopsis. Plant Cell2: 755–767.PubMedCrossRefGoogle Scholar
  45. Sommer, H., Beltrán, J.P., Huijser, P., Pape, H., Lönnig, W.E., Saedler, H. andSchwarz-Sommer, Z. 1990.Deficiens, a homeotic gene involved in the control of flower morphogenesis inAntirrhinum majus: the protein shows homology to transcription factors. EMBO J.9: 605–613.PubMedGoogle Scholar
  46. Souer, E., van Houwelingen, A., Kloos D., Mol, J. andKoes, R. 1996. TheNo Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and expressed at meristem and primordia boundaries. Cell85: 159–170.PubMedCrossRefGoogle Scholar
  47. Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.-E., Saedler, H., Sommer, H. andSchwarz-Sommer, Z. 1992.GLOBOSA: a homeotic gene which interacts withDEFICIENS in the control ofAntirrhinum floral organogenesis. EMBO J.11: 4693–4704.PubMedGoogle Scholar
  48. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. andMeyerowitz, E.M. 1992.LEAFY controls floral meristem identity inArabidopsis. Cell69: 843–859.PubMedCrossRefGoogle Scholar
  49. Weigel, D. andMeyerowitz, E.M. 1993. Activation of floral homeotic genes inArabidopsis. Science261: 1723–1726.CrossRefPubMedGoogle Scholar
  50. Weigel, D. andMeyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell78: 203–209.PubMedCrossRefGoogle Scholar
  51. Wilkinson, M.G. andHaughn, G.W. 1995.UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate inArabidopsis. Plant Cell7: 1485–1499.PubMedCrossRefGoogle Scholar
  52. Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P. and Meyerowitz, E.M. 1998. Principles of Development. Current Biology, London.Google Scholar
  53. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. andMeyerowitz, E.M. 1990. The protein encoded by theArabidopsis homeotic geneagamous resembles transcription factors. Nature346: 35–39.PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1998

Authors and Affiliations

  • Elliot M. Meyerowitz
    • 1
  1. 1.Division of Biology 156-29California Institute of TechnologyPasadenaUSA

Personalised recommendations