Skip to main content
Log in

Resonant reflection of a series of submerged breakwaters

  • Published:
Il Nuovo Cimento C

Summary

The phenomenon of the resonant reflection of a train of monochromatic waves by an undulated bottom has been largely studied, but in most cases within the hypothesis of smooth variations of the bottom behaviour. Here we consider the case of a series of equally spaced submerged breakwaters of rectangular section, in order to investigate the role of the evanescent modes, neglected in the previous studies, and to evaluate the response of a structure that could be of interest from an engineering point of view. It has been found that the resonant reflection does not occur only in correspondence with the waves of length twice the wavelength of the Fourier components of the bottom behaviour, but also in correspondence with waves of the same length as the distance between the breakwaters. Furthermore, the strength of the resonant reflections,i.e. the height and width of the peaks in the response curve, seems to depend merely on the total amount of material employed in the construction of the breakwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lau andB. Travis:J. Geophys. Res.,78, 4489 (1973).

    Article  ADS  Google Scholar 

  2. A. G. Davies:Dyn. Atmos. Oceans,6, 207 (1982).

    Article  ADS  Google Scholar 

  3. A. G. Davies:J. Mar. Res.,40, 331 (1982).

    ADS  Google Scholar 

  4. A. D. Heathershaw:Nature,296, 343 (1982).

    Article  ADS  Google Scholar 

  5. A. G. Davies andA. D. Heathershaw:J. Fluid Mech.,144, 419 (1984).

    Article  ADS  Google Scholar 

  6. A. Mitra andM. D. Greenberg:Trans. ASME E: J. Appl. Mech.,51, 251 (1984).

    MATH  MathSciNet  Google Scholar 

  7. C. C. Mei:J. Fluid Mech.,152, 315 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. J. T. Kirby:J. Fluid Mech.,162, 171 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. P. L.-F. Liu:J. Fluid Mech.,179, 371 (1987).

    Article  MATH  ADS  Google Scholar 

  10. C. C. Mei, J. Hara andM. Naciri:J. Fluid Mech.,186, 147 (1988).

    Article  MATH  ADS  Google Scholar 

  11. M. Naciri andC. C. Mei:J. Fluid Mech.,192, 51 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. J. T. Kirby:J. Fluid Mech.,162, 187 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. P. Vengayil andJ. T. Kirby:Shoaling and reflection of nonlinear shallow water waves, inProceedings of the 20th Coastal Engineering Conference, November 9–14, 1986, Vol.1 (1986), p. 794.

  14. S. B. Yoon andP. L.-F. Liu:J. Fluid Mech.,180, 451 (1987).

    Article  MATH  ADS  Google Scholar 

  15. T. Hara andC. C. Mei:J. Fluid Mech.,178, 221 (1987).

    Article  MATH  ADS  Google Scholar 

  16. J. T. Kirby andP. Vengayil:J. Geophys. Res.,93, 10782 (1988).

    ADS  Google Scholar 

  17. J. T. Kirby:J. Fluid Mech.,186, 501 (1988).

    Article  MATH  ADS  Google Scholar 

  18. K. Takano:Huille Blanche,15, 247 (1960).

    MathSciNet  Google Scholar 

  19. J. T. Kirby andR. A. Dalrymple:J. Fluid Mech.,133, 47 (1983).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattioli, F. Resonant reflection of a series of submerged breakwaters. Il Nuovo Cimento C 13, 823–833 (1990). https://doi.org/10.1007/BF02511999

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511999

PACS. 92.10

Navigation