Skip to main content
Log in

Generalized dirac operators on nonsmooth manifolds and Maxwell's equations

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We develop a function theory associated with Dirac type operators on Lipschitz subdomains of Riemannian manifolds. The main emphasis is on Hardy spaces and boundary value problems, and our aim is to identify the geometric and analytic assumptions guaranteeing the validity of basic results from complex function theory in this general setting. For example, we study Plemelj-Calderón-Seeley-Bojarski type splittings of Cauchy boundary data into traces of ‘inner’ and ‘outer’ monogenics and show that this problem has finite index. We also consider Szegö projections and the corresponding Lp-decompositions. Our approach relies on an extension of the classical Calderón-Zygmund theory of singular integral operators which allow one to consider Cauchy type operators with variable kernels on Lipschitz graphs. In the second part, where we explore connections with Maxwell's equations, the main novelty is the treatment of the corresponding electro-magnetic boundary value problem by recasting it as a ‘half’ Dirichlet problem for a suitable Dirac operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N. (1957). A unique continuation theorem for solutions of elliptic differential equations or inequalities of second order,J. Math.,36, 235–249.

    MATH  MathSciNet  Google Scholar 

  2. Bell, S. (1992).The Cauchy Transform, Potential Theory and Conformal Mapping, CRC Press LLC, Boca Raton, FI.

    Google Scholar 

  3. Bergh, J. and Löfström, J. (1976)Interpolation Spaces. An Introduction, Springer-Verlag.

  4. Berline, N., Getzler, E., and Verne, M. (1991).Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, Heidelberg New York.

    MATH  Google Scholar 

  5. Bojarski, B. (1979). The abstract linear conjugation problem and Fredholm pairs of subspaces, In Memoriam I.N. Vekua, Tbilisi University, Tbilisi, 45–60.

    Google Scholar 

  6. Booß-Bavnbek, B. and Wojciechowski, K.P. (1993).Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, Basel, Berlin.

    MATH  Google Scholar 

  7. Bourdaud, G. (1982).L p-estimates for certain non regular pseudo-differential operators,Comm. PDE,7, 1023–1033.

    Article  MATH  MathSciNet  Google Scholar 

  8. Calderbank, D. (1995).Geometrical Aspects of Spinor and Twistor Analysis, Ph.D. Thesis, University of Warwick.

  9. Coifman, R., McIntosh, A., and Meyer, Y. (1982). L'intérgrale de Cauchy definit un opérateur borné surL 2 pour les courbes liptschitziennes.Annals of Math.,116, 361–388.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cordes, H.O. (1956). Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben,Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl.,11, 239–258.

    MathSciNet  Google Scholar 

  11. Dahlberg, B. and Kenig, C. (1987). Hardy spaces and the Neumann problem inL p for Laplace's equation in Lipschitz domains,Annals of Math.,125, 437–465.

    Article  MATH  MathSciNet  Google Scholar 

  12. Duren, P.L. (1970).Theory of H p Spaces. Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London.

    MATH  Google Scholar 

  13. Fabes, E.B. and Kenig, C.E. (1981). On the Hardy spaceH 1 of aC 1 domain,Ark. Mat.,19, 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  14. Fabes, E.B., Mendez, O., and Mitrea, M. (1998). Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains.J. Funct. Anal.,159, 323–368.

    Article  MATH  MathSciNet  Google Scholar 

  15. Fefferman, C. and Stein, E.M. (1972).H p spaces of several variables,Acta Math.,129, 137–193.

    Article  MATH  MathSciNet  Google Scholar 

  16. Frazier, M. and Jawerth, B. (1985). Decomposition of Besov spaces,Indiana Univ. Math. J.,34, 777–799.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gilbert, J. and Murray, M.A. (1991).Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics.

  18. Hoffman, K. (1988).Banach Spaces of Analytic Functions. Dover edition.

  19. Hofmann, S. (1994). On singular integrals of Calderón-type in ℝn, and BMO.Revista Matemática Iberoamericana,10(3), 467–504.

    MATH  Google Scholar 

  20. Jawerth, B. and Mitrea, M. (1995). Higher dimensional scattering theory onC 1 and Lipschitz domains.Am. J. Math.,117(4), 929–963.

    Article  MATH  MathSciNet  Google Scholar 

  21. Jerison, D. and Kenig, C. (1995). The inhomogeneous Dirichlet problem in Lipschitz domains,J. Funct. Anal.,130, 161–219.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kalton, N. and Mitrea, M. (1998). Stability results on interpolation scales of quasi-Banach spaces and applications,Trans. AMS,350, 3903–3922.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kato, T. (1976).Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  24. Kenig, C. (1980). WeightedH p spaces on Lipschitz domains,Am. J. Math.,102, 129–163.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kenig, C. (1994).Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Series in Mathematics, No. 83,Am. Math. Soc..

  26. Kenig, C.E. and Pipher, J. (1987). Hardy spaces and the Dirichlet problem on Lipschitz domains,Rev. Mat. Iberoamericana,3(2), 191–247.

    MATH  MathSciNet  Google Scholar 

  27. Kumano-go, H. and Nagase, M. (1978). Pseudo-differential operators with nonregular symbols and applications,Funkcial Ekvac.,21, 151–192.

    MATH  MathSciNet  Google Scholar 

  28. Lawson Jr., H.B. and Michelson, M.L. (1989).Spin Geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, Princeton.

    MATH  Google Scholar 

  29. Li, C., McIntosh, A., and Semmes, S. (1992). Convolution singular integrals on Lipschitz surfaces,J. Am. Math. Soc.,5(3), 455–481.

    Article  MATH  MathSciNet  Google Scholar 

  30. McIntosh, A., Mitrea, D., and Mitrea, M. (1997). Rellich type identities for one-sided monogenic functions in Lipschitz domains and applications, inAnalytical and Numerical Methods in Quaternions and Clifford Analysis, Sprössig, W. and Gürlebeck, K., Eds., Technical University of Freiberg, 135–143.

  31. McIntosh, A. and Mitrea, M. (1999). Clifford algebras and Maxwell's equations in Lipschitz domains,Math. Methods Appl. Sci.,22, 1599–1620.

    Article  MATH  MathSciNet  Google Scholar 

  32. Meyer, Y. and Coifman, R. R. (1990).Ondelettes et Opérateurs, Vol. III, Hermann, editeurs des sciences et des arts, Paris.

  33. Mitrea, D., Mitrea, M., and Pipher, J. (1997). Vector potential theory on Lipschitz domains in ℝ3 and applications to electromagnetic scattering,J. of Fourier Anal. Appl.,3, 131–192.

    Article  MATH  MathSciNet  Google Scholar 

  34. Mitrea, D., Mitrea, M., and Taylor, M. (2000). Layer potentials, the Hodge Laplacian and global boundary problems in non-smooth Riemannian manifolds to appear inMemoirs of AMS.

  35. Mitrea, M. (1994).Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathematics, No. 1575, Springer-Verlag, Berlin, Heidelberg.

    MATH  Google Scholar 

  36. Mitrea, M. (1994). Electromagnetic scattering on nonsmooth domains,Mathematical Research Letters,1(6), 639–646.

    MATH  MathSciNet  Google Scholar 

  37. Mitrea, M. (1995). The method of layer potentials in electromagnetic scattering theory on nonsmooth domains,Duke Math. J.,77, 111–133.

    Article  MATH  MathSciNet  Google Scholar 

  38. Mitrea, M. (1999). On Bojarski's index formula for nonsmooth interfaces,Electronic Research Announcements of the Am. Math. Soc.,5(1), 40–46.

    Article  MATH  MathSciNet  Google Scholar 

  39. Mitrea, M. and Taylor, M. (1999). Boundary layer methods for Lipschitz domains in Riemannian manifolds,J. Funct. Anal.,163, 181–251.

    Article  MATH  MathSciNet  Google Scholar 

  40. Mitrea, M. and Taylor, M. (2000). Potential theory on Lipschitz domains in Riemannian manifolds:L p, Hardy, and Hölder space results, to appear inCommunications in Analysis and Geometry.

  41. Mitrea, M. and Taylor, M. (2000). Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem,J. Funct. Anal.,176(1), 1–79.

    Article  MATH  MathSciNet  Google Scholar 

  42. Mitrea, M. and Taylor, M. (2000). Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors,Communications in PDE,25, 1487–1536.

    MATH  MathSciNet  Google Scholar 

  43. Taylor, M. (1991).Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston.

    MATH  Google Scholar 

  44. Taylor, M. (1996).Partial Differential Equations, Vol. I–III, Springer-Verlag.

  45. Taylor, M. (2000).Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Math. Surveys and Monographs, Vol. 81, AMS, Providence.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrea, M. Generalized dirac operators on nonsmooth manifolds and Maxwell's equations. The Journal of Fourier Analysis and Applications 7, 207–256 (2001). https://doi.org/10.1007/BF02511812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511812

Math Subject Classifications

Keywords and Phrases

Navigation