Advertisement

Journal of Fourier Analysis and Applications

, Volume 6, Issue 5, pp 537–550 | Cite as

The characterization of the Triebel-Lizorkin spaces forp=∞

  • Huy-Qui Bui
  • Mitchell H. Taibleson
Article

Abstract

We establish the characterization of the weighted Triebel-Lizorkin spaces for p=∞ by means of a “generalized” Littlewood-Paley function which is based on a kernel satisfying “minimal” moment and Tauberian conditions. This characterization completes earlier work by Bui et al. The definitions of the Ḟ ∞,q α spaces are extended in a natural way to Ḟ ∞,∞ α and it is proven that this is the same space as Ḃ ∞,∞ α , which justifies the standard convention in which the two spaces are defined to be equal. As a consequence, we obtain a new characterization of the Hölder-Zygmund space Ḃ ∞,∞ α .

Math Subject Classifications

Primary 42B25 secondary 46E35 

Keywords and Phrases

Littlewood-Paley functions BMO, A weights Besov-Lipschitz spaces Triebel-Lizorkin spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bui, H. -Q. (1982). Weighted Besov and Triebel spaces: Interpolation by the real method,Hiroshima Math. J.,12 581–605.MathSciNetGoogle Scholar
  2. [2]
    Bui, H. -Q., Paluszyński, M., and Taibleson, M.H. (1996). A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces,Studia Math.,119, 219–246.MATHMathSciNetGoogle Scholar
  3. [3]
    Bui, H. -Q., Paluszyński, M., and Taibleson, M.H. (1997). Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The caseq<1,J. Fourier Anal. Appl.,3, Special Issue, 837–846.MATHMathSciNetGoogle Scholar
  4. [4]
    Fabes, E.B., Johnson, R.L., and Neri, U. (1976). Spaces of harmonic functions representable by Poisson integrals of functions inBMO andL p,Indiana Univ. Math. J.,2, 159–170.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Fabes, E.B. and Neri, U. (1975). Characterizations of temperatures with initial data inBMO, Duke Math. J.,42, 725–734.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Fefferman, C. and Stein, E.M. (1972).H p spaces of several variables,Acta Math.,129, 137–193.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Frazier, M. and Jawerth, B. (1985). Decomposition of Besov spaces,Indiana Univ. Math. J.,34, 777–799.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Frazier, M. and Jawerth, B. (1990). A discrete transform and decomposition of distribution spaces,J. Funct. Anal.,93, 34–170.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Frazier, M., Jawerth, B., and Weiss, G. (1991). Littewood-Paley theory and the study of function spaces,CBMS Regional Conference Ser., American Mathematical Society,79.Google Scholar
  10. [10]
    Hunt R., Muckenhoupt, B., and Wheeden, R. (1973). Weighted norm inequalities for the conjugate function and Hilbert transform,Trans. Am. Math. Soc.,176, 227–251.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Meyer, Y. (1990).Ondelettes et Opérateurs I. Hermann, Paris.MATHGoogle Scholar
  12. [12]
    Muckenhoupt, B. (1972). Weighted norm inequalities for the Hardy maximal function,Trans. Am. Math. Soc.,165, 207–226.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Peetre, J. (1975). On spaces of Triebel-Lizorkin type,Ark. Mat.,13, 123–130.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Peetre, J. (1976).New Thoughts on Besov Spaces, Duke University Press, Durham, NC.MATHGoogle Scholar
  15. [15]
    Rychkov, V. S. (1998). Intrinsic characterizations of distribution spaces on domains,Studia Math. 127, 277–298.MATHMathSciNetGoogle Scholar
  16. [16]
    Rychov, V. S. Littlewood-Paley theory and function spaces withA ploc weights, preprint.Google Scholar
  17. [17]
    Rychkov, V. S. On a theorem of Bui, Paluszyński and Taibleson, preprint.Google Scholar
  18. [18]
    Stein, E.M. (1993).Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  19. [19]
    Strömberg, J. -O. and Torchinsky, A. (1989).Weighted Hardy Spaces. Springer-Verlag, Berlin.MATHGoogle Scholar
  20. [20]
    Triebel, H. (1992).Theory of Function Spaces II, Birkhäuser, Basel.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2000

Authors and Affiliations

  • Huy-Qui Bui
    • 1
  • Mitchell H. Taibleson
    • 2
  1. 1.Department of MathematicsUniversity of CanterburyChristchurch 1New Zealand
  2. 2.Department of MathematicsWashington UniversitySt. Louis

Personalised recommendations