Advertisement

Statistical Methods and Applications

, Volume 11, Issue 1, pp 83–94 | Cite as

Inspecting geometric tolerances: Uncertainty analysis in position tolerances control on Coordinate Measuring Machines

  • Daniele Romano
  • Grazia Vicario
Statistical Applications

Abstract

Conformance to a specified part geometry is key to achieve product quality. Geometric tolerance control on Coordinate Measuring Machines is a critical issue as parsimony in the set of probed points dictated by economic considerations conflicts with the requirement of full field inspection mandated by tolerance standards. Evaluation of uncertainty originated by sampling errors takes therefore a high priority level. The case of position tolerance control on a hole axis and related uncertainty analysis is examined in the paper via Monte Carlo simulation. Results exhibit a remarkable uncertainty related to a number of steps involved in the control method. A comprehensive statistical analysis is shown to be required if risk of failure to reach the correct decision in assessing part conformance is to be kept under control.

Key words

Product quality tolerance inspection uncertainty CMM Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASME Y14.5.1M* (1994) Mathematical definition of dimensioning and tolerancing principles. The American Society of Mechanical Engineers, New YorkGoogle Scholar
  2. BIPM, IEC, ISCC, ISO, IUPAC, IUPAP, OIML (1983) Guide to the Expression of Uncertainty in Measurement. ISO publication, GenevaGoogle Scholar
  3. Box GEP, Draper NR (1987) Empirical model building and response surfaces. Wiley, New YorkMATHGoogle Scholar
  4. Dowling MM, Griffin PM, Tsui KL, Zhou C (1997) Statiscal issues in geometric feature inspection using coordinate measuring machines.Technometrics 39 (1), 3–24MATHCrossRefGoogle Scholar
  5. Gleser LJ (1998) Assessing uncertainty in measurement.Statistical Science 13 (3), 277–290MATHMathSciNetCrossRefGoogle Scholar
  6. Phillips SD, Eberhardt KR, Estler WT (1999) Measurement uncertainty and uncorrected bias. Proceedings of 1999 NCSL, Charlotte, NC, July, pp 831–845Google Scholar
  7. Pukelsheim MF (1993) Optimal design of experiment. Wiley New YorkGoogle Scholar
  8. Trapet E, Franke M, Haertig F, Schwenke H, Wäldele F, Cox M, Forbes A, Delbressine F, Schellekens P, Trenk M, Meyer H, Moritz G, Guth T, Wanner N (1999) Traceability of coordinate measurements according to the method of the virtual measuring machine. Final Project Report MAT1-CT94-0076, PTB-Bericht (PTB-Report) F-35, Part 1 and 2, ISBN 3-89701-330-4Google Scholar
  9. Vicario G, Barbato G (1999) Macchine di misura a coordinate: valutazione statistica dei parametri di forma. Giornata di studio su Valutazione della Qualità e Customer Satisfaction: il ruolo della Statistica, SIS, BolognaGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Daniele Romano
    • 1
  • Grazia Vicario
    • 2
  1. 1.Dipartimento di Ingegneria MeccanicaUniversità di CagliariCagliariItaly
  2. 2.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly

Personalised recommendations