Shock Waves

, Volume 6, Issue 4, pp 241–248 | Cite as

Computational analysis of dense gas shock tube flow

  • B. M. Argrow


Nonclassical phenomena associated with the classical dynamics of real gases in a conventional shock tube are studied. A TVD predictor-corrector (TVD-MacCormack) scheme with reflective endwall boundary conditions is used for the one-dimensional Euler equations to simulate the evolution of the wave field of a van der Waals gas. Depending upon the initial conditions of the gas, wave fields are produced that contain nonclassical phenomena such as expansion shocks, composite waves, splitting shocks, etc. In addition, the interactions of waves reflected from the endwalls produce both classical and nonclassical phenomena. Wave field evolution is depicted using plots of the flow variables at specific times and withx-t diagrams.

Key words

Riemann problem Shock tube Dense gas TVD scheme 



nondimensional speed of sound,\(a = {{\bar a} \mathord{\left/ {\vphantom {{\bar a} {\left( {\bar R\bar T_c } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\bar R\bar T_c } \right)}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \)

\(\bar b\)

van der Waals covolume parameter,\(\bar b = {{\bar R\bar T_c } \mathord{\left/ {\vphantom {{\bar R\bar T_c } {8\bar p}}} \right. \kern-\nulldelimiterspace} {8\bar p}}_c :\left[ {m^3 \cdot kg^{ - 1} } \right]\)

\(\bar c_\upsilon \)

specific heat at constant volume [J·kg−1·K−1]


nondimensional specific internal energy,\(e = {{\left( {\bar e - \bar e_c } \right)} \mathord{\left/ {\vphantom {{\left( {\bar e - \bar e_c } \right)} {\left( {\bar R\bar T_c } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\bar R\bar T_c } \right)}}\)


nondimensional specific total energy,e t=e+u2/2


flux vector

\(\bar L\)

shock tube length [m]


Mach number


number of time steps


nondimensional pressure,\(p = {{\bar p} \mathord{\left/ {\vphantom {{\bar p} {\bar p_c }}} \right. \kern-\nulldelimiterspace} {\bar p_c }}\)


vector of conserved variables

\(\bar R\)

gas constant [J·kg−1·K −1]


nondimensional specific entropy,\(s = {{\left( {\bar s - \bar s_c } \right)} \mathord{\left/ {\vphantom {{\left( {\bar s - \bar s_c } \right)} {\bar R}}} \right. \kern-\nulldelimiterspace} {\bar R}}\)


nondimensional time coordinate,\(t = {{\bar L\bar t} \mathord{\left/ {\vphantom {{\bar L\bar t} {\left( {\bar R\bar T_c } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\bar R\bar T_c } \right)}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \)


nondimensional temperature,\(T = {{\bar T} \mathord{\left/ {\vphantom {{\bar T} {\bar T}}} \right. \kern-\nulldelimiterspace} {\bar T}}_c \)


nondimensional velocity,\(u = {{\bar u} \mathord{\left/ {\vphantom {{\bar u} {\left( {\bar R\bar T_c } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\bar R\bar T_c } \right)}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \)


nondimensional space coordinate,\(x = {{\bar x} \mathord{\left/ {\vphantom {{\bar x} {\bar L}}} \right. \kern-\nulldelimiterspace} {\bar L}}\)


compressibility factor,\(Z_c = \left( {{{\bar p} \mathord{\left/ {\vphantom {{\bar p} {\bar \rho \bar R\bar T}}} \right. \kern-\nulldelimiterspace} {\bar \rho \bar R\bar T}}} \right)_c = {3 \mathord{\left/ {\vphantom {3 8}} \right. \kern-\nulldelimiterspace} 8}\)

Greek characters

\(\bar \alpha \)

van der Waals force parameter,\(\bar \alpha = {{27\bar R^2 \bar T_c^2 } \mathord{\left/ {\vphantom {{27\bar R^2 \bar T_c^2 } {\left( {64\bar p_c } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {64\bar p_c } \right)}}\)


\({{\bar R} \mathord{\left/ {\vphantom {{\bar R} {\bar c_\nu }}} \right. \kern-\nulldelimiterspace} {\bar c_\nu }}\)


time step


space step


fundamental derivative of gas dynamics


flux limiter function


eigenvalue of the Euler equations flux-vector Jacobian matrix,l=1,2,3


nondimensional specific volume ν=1/ρ


nondimensional density,\({{\bar \rho } \mathord{\left/ {\vphantom {{\bar \rho } {\bar \rho _c }}} \right. \kern-\nulldelimiterspace} {\bar \rho _c }}\)


Courant number, σ=vΔtx


spectral radius of the Euler equations flux-vector Jacobian matrix



temporal index



critical point value


spatial index


reduced variable


shock quantity


reference value


dimensional quantity

predictor value




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldo AC, Argrow BM (1995) Dense gas flow in minimum length nozzles. J Fluid Eng 117:270Google Scholar
  2. Argrow BM, Cox RA (1993) A quantitative second-law based measure of numerical accuracy. In: Thermodynamics and the design, analysis, and improvement of energy systems. AES-30/HTD-266:49Google Scholar
  3. Borisov AA, Borisov AIA, Kutateladze SS Nakoryakov VE (1983) Rarefaction shock wave near the critical liquid-vapour point. J Fluid Mech 126:59CrossRefADSGoogle Scholar
  4. Causon DM (1988) A total variation diminishing scheme for computational aerodynamics. In: Morton, KW, Baines, MJ (eds) Numerical methods for fluid dynamics III. Clarendon Press, Oxford, Oxford University Press, New York 449Google Scholar
  5. Cramer MS (1991) Nonclassical dynamics of classical gases. In: Kluwick A (ed) Nonlinear waves in real fluids. Springer, Wien New York 91Google Scholar
  6. Cramer MS (1989a) Shock splitting in single-phase gases. J Fluid Mech 199:281MATHMathSciNetCrossRefADSGoogle Scholar
  7. Cramer MS (1989b) Negative nonlinearity in selected fluorocarbons. Phys Fluids A 1:1894CrossRefADSGoogle Scholar
  8. Cramer MS (1987) Structure of weak shocks in fluids having embedded regions of negative nonlinearity. Phys Fluids 30:3034CrossRefADSGoogle Scholar
  9. Cramer MS, Crickenberger AB (1991) The dissipative structure of shock waves in dense gases. J Fluid Mech 223:325MATHCrossRefADSGoogle Scholar
  10. Cramer MS, Fry RN (1993) Nozzle flows of dense gases. Phys Fluids A 5:1246CrossRefADSGoogle Scholar
  11. Cramer MS, Kluwick A (1984) On the propagation of waves exhibiting both positive and negative nonlinearity. J Fluid Mech, 142:9MATHMathSciNetCrossRefADSGoogle Scholar
  12. Cramer MS, Kluwick A, Watson LT, Pelz W (1986) Dissipative waves in fluids having both positive and negative nonlinearity. J Fluid Mech 169:323MATHCrossRefADSGoogle Scholar
  13. Cramer MS, Sen R (1987) Exact solutions for sonic shocks in van der Waals gases. Phys Fluids 30:377MATHCrossRefADSGoogle Scholar
  14. Cramer MS, Sen R (1986) Shock formation in fluids having embedded regions of negative nonlinearity. Phys Fluids 29:2181MATHCrossRefADSGoogle Scholar
  15. Davis SF (1987) A simplified TVD finite difference scheme via artificial viscosity. SIAM J Sci and Stat Comput 8:1MATHCrossRefGoogle Scholar
  16. Emanuel G (1986) Gas dynamics: Theory and applications. AIAA Education Series, New YorkGoogle Scholar
  17. Emanuel G (1987) Advanced classical thermodynamics. AIAA Education Series, New YorkGoogle Scholar
  18. Martin JJ, Hou Y-C (1955) Development of an equation of state for gases. AIChE J 1:142CrossRefGoogle Scholar
  19. Menikoff R, Plohr, BJ (1989) The Riemann problem for fluid flow of real materials. Rev Mod Phys 61:75MathSciNetCrossRefADSGoogle Scholar
  20. Schnerr GH, Leidner P (1993a) Two-dimensional nozzle flow of dense gases. ASME Paper 93FE8Google Scholar
  21. Schnerr GH, Leidner P (1993b) Numerical investigation of axial cascades for dense gases. Pacific International Conference on Aerospace Science and Technology, Tainan, TaiwanGoogle Scholar
  22. Sod GA, (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comp Phys 27:1MATHMathSciNetCrossRefADSGoogle Scholar
  23. Thompson PA (1971) A fundamental derivative in gasdynamics. Phys Fluids 14:1843MATHCrossRefGoogle Scholar
  24. Thompson PA, Carafano GC, Kim Y-G (1986) Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J Fluid Mech 166:57MATHCrossRefADSGoogle Scholar
  25. Thompson PA, Lambrakis KC (1973) Negative shock waves. J Fluid Mech 60:187MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Verlag 1996

Authors and Affiliations

  • B. M. Argrow
    • 1
  1. 1.Department of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations