Skip to main content
Log in

Eigenfunction expansions and the pinsky phenomenon on compact manifolds

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We extend results on pointwise convergence of eigenfunction expansions established for functions on flat tori in [24] and [26] to the setting of compact Riemannian manifolds, subject to a mild restriction on the order of caustics that can arise in the fundamental solution of the wave equation. This gives analyses of some endpoint cases of results treated in [3]. In particular, we are able to treat the Pinsky phenomenon for eigenfunction expansions of piecewise smooth functions with jump across the boundary of a ball on such manifolds, in dimension three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R. (1974). Spatially inhomogeneous pseudodifferential operators II,Comm. Pure Appl. Math.,27, 161–205.

    MATH  MathSciNet  Google Scholar 

  2. Brandolini, L. and Colzani, L. (1999). Localization and convergence of eigenfunction expansions,J. Fourier Anal.,5, 431–447.

    Article  MATH  MathSciNet  Google Scholar 

  3. Brandolini, L. and Colzani, L. (1999). Decay of Fourier transforms and summability of eigenfunction expansions, preprint.

  4. Colzani, L. and Vignati, M. (1995). The Gibbs phenomenon for multiple Fourier integrals,J. Approx. Theory,80, 119–131.

    Article  MATH  MathSciNet  Google Scholar 

  5. Duistermaat, J. (1996).Fourier Integral Operators, 2nd ed., Birkhäuser, Boston.

    MATH  Google Scholar 

  6. Duistermaat, J. and Guillemin, V. (1975). The spectrum of positive elliptic operators and periodic bicharacteristics,Invent. Math.,29, 39–79.

    Article  MATH  MathSciNet  Google Scholar 

  7. Greenleaf, A. and Uhlmann, G. (1990). Estimates for singular Radon transforms and pseudodifferential operators with singular symbols,J. Funct. Anal.,89, 202–232.

    Article  MATH  MathSciNet  Google Scholar 

  8. Guillemin, V. and Uhlmann, G. (1981). Oscillatory integrals with singular symbols,Duke Math. J.,48, 251–267.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hörmander, L. (1968). The spectral function of an elliptic operator,Acta Math.,121, 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  10. Hörmander, L. (1971). Fourier integral operators I,Acta Math.,127, 79–183.

    Article  MATH  MathSciNet  Google Scholar 

  11. Kuratsubo, S. (1999). On pointwise convergence of Fourier series of the indicator function ofn dimensional ball,Sci. Report Hirosaki,43, 199–208.

    MathSciNet  Google Scholar 

  12. Kuratsubo, S. (1999). On pointwise convergence of Fourier series of radial functions in several variables,Proc. AMS,127, 2987–2994.

    Article  MATH  MathSciNet  Google Scholar 

  13. Lax, P. (1957). Asymptotic solutions of oscillatory initial value problems,Duke Math. J.,24, 627–646.

    Article  MATH  MathSciNet  Google Scholar 

  14. Melrose, R. (1987). Marked Lagrangians, preprint.

  15. Melrose, R. and Taylor, M. (1990). Boundary Problems for Wave Equations with Grazing and Gliding Rays, manuscript.

  16. Melrose, R. and Uhlmann, G. (1979). Lagrangian intersections and the Cauchy problem,Comm. Pure Appl. Math.,32, 483–519.

    MATH  MathSciNet  Google Scholar 

  17. Pinsky, M. (1994). Pointwise Fourier inversion and related eigenfunction expansions,Comm. Pure Appl. Math.,47, 653–681.

    MATH  MathSciNet  Google Scholar 

  18. Pinsky, M. Eigenfunction expansions on geodesic balls and rank one symmetric spaces of compact type,Annals of Global Anal. and Geom., to appear.

  19. Pinsky, M. (1998). Fourier-Bessel expansions with general boundary conditions, pp. 79–86 inProc. Seventh IWAA, Birkhäuser, Boston.

    Google Scholar 

  20. Pinsky, M., Stanton, N., and Trapa, P. (1993). Fourier series of radial functions in several variables,J. Funct. Anal.,116, 111–132.

    Article  MATH  MathSciNet  Google Scholar 

  21. Pinsky, M. and Taylor, M. (1997). Pointwise Fourier inversion: a wave equation approach,J. Fourier Anal.,3, 647–703.

    MATH  MathSciNet  Google Scholar 

  22. Sogge, C. (1988). Concerning theL p norm of spectral clusters for second order elliptic differential operators on compact manifolds,J. Funct. Anal.,77, 123–134.

    Article  MATH  MathSciNet  Google Scholar 

  23. Taylor, M. (1981).Pseudodifferential Operators, Princeton University Press, Princeton.

    MATH  Google Scholar 

  24. Taylor, M. (1999). Pointwise Fourier inversion on tori and other compact manifolds,J. Fourier Anal.,5, 449–463.

    Article  MATH  Google Scholar 

  25. Taylor, M. The Dirichlet-Jordan test and multidimensional extensions,Proc. AMS, to appear.

  26. Taylor, M. Pointwise Fourier inversion- an addendum,Proc. AMS, to appear.

  27. Varchenko, A. (1983). Number of lattice points in families of homothetic domains in ℝn,Funk. An.,17, 1–6.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Fulvio Ricci

Acknowledgements and Notes. Partially supported by NSF grant DMS 9877077.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M. Eigenfunction expansions and the pinsky phenomenon on compact manifolds. The Journal of Fourier Analysis and Applications 7, 507–522 (2001). https://doi.org/10.1007/BF02511223

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511223

Math Subject Classifications

Keywords and Phrases

Navigation