Skip to main content
Log in

Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine. Application to detonation sensitivity

  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The thermal decomposition of gaseous monomethylhydrazine has been studied in a 38.4 mm i.d. shock tube behind a reflected shock wave at 1040–1370 K, 140–455 kPa and in mixtures containing 97 to 99 mol% argon, by using MMH absorption at 220 nm. A chemical kinetic model based on MMH decomposition profiles has been developed. This model has been used, with some assumptions, to evaluate the detonation sensitivity of pure gaseous MMH. This compound is found to be much less sensitive to detonation than hydrazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abid, S, Dupré, G, Paillard, C (1993) Oxidation of gaseous unsymmetrical dimethylhydrazine at high temperatures and detonation of UDMH/O2 mixture. AIAA Progress in Astronautics and Aeronautics 153: 162

    Google Scholar 

  • Ács, G, Péter, A (1987) Data on the thermochemistry of azoalkanes. Int. J. Chem. Kinet. 19: 929

    Article  Google Scholar 

  • Basevich, VYa (1987) Chemical kinetics in the combustion processes: a detailed kinetics mechanism and its implementation. Prog. Energy Combust. Sci. 13: 199

    Article  Google Scholar 

  • Baulch, DL, Cobos, CJ, Cox, RA, Esser, C, Franck, P, Just, Th, Kerr, JA, Pilling, MJ, Troe, J, Walker, RW, Warnatz, J (1992) Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21: 411

    ADS  Google Scholar 

  • Baulch, DL, Cobos, CJ, Cox, RA, Frank, P, Hayman, G, Just, Th, Kerr, JA, Murrels, T, Pilling, MJ, Troe, J, Walker, RW, Warnatz, J. (1994) Summary table of evaluated kinetic data for combustion modeling: supplement 1. Combust. Flame 98: 59

    Article  Google Scholar 

  • Benson, SW (1976) Thermochemical kinetics. Second Edition. John Wiley & Sons, New York London Sydney Toronto

    Google Scholar 

  • Benz, FJ, Pedley, MD (1986) A comparison of the explosion hazards of hydrazine and methylhydrazine in aerospace environments. Jannaf Propulsion Meeting, New Orleans.

  • Burcat, A, McBride, B (1995) 1995 Ideal gas thermodynamic data for combustion and air-pollution use. Technion Aeronautical Engineering Report, T.A.E. 732

  • Catoire, L, Bassin, X, Dupré, G, Paillard, C (1994) Shock tube study of ignition delays and detonation of gaseous monomethylhydrazine/oxygen mixtures. Combust. Flame 99: 573

    Article  Google Scholar 

  • Dagaut, P, Boettner, J-C, Cathonnet, M (1991) Methane oxidation: experimental and kinetic modeling study. Combust. Sci. Technol. 77: 127

    Google Scholar 

  • Davidson, DF, Kohse-Höinghaus, K, Chang, AY, Hanson, RK (1990) A pyrolysis mechanism for ammonia. Int. J. Chem. Kinet. 22: 513

    Article  Google Scholar 

  • Dean, AM, Westmoreland, PM (1987) Bimolecular QRRK analysis of methyl radical reactions. Int. J. Chem. Kinet. 19: 207

    Article  Google Scholar 

  • Domalski, ES, Hearing, ED (1993) Estimation of the thermodynamic properties of C−H−N−O−S-Halogen compounds at 298. 15 K. J. Phys. Chem. Ref. Data 22: 805

    ADS  Google Scholar 

  • Donahue, BB (1995) Mars ascent-stage design utilizing nuclear propulsion. J. Spacecraft and Rockets 32: 552

    ADS  Google Scholar 

  • Eberstein, IJ (1964) The gas-phase decomposition of hydrazine propellants. PhD thesis, Princeton University

  • Eberstein IJ, Glassman, I (1965) The gas-phase decomposition of hydrazine and its methyl derivatives. Tenth Symp. (international) on Combustion, The Combustion Institute, Pittsburgh, PA, 365

  • Fahr, A, Laufer, AH (1990) Direct rate measurements of the combination and disproportionation of vinyl radicals. J. Phys. Chem. 94: 726

    Article  Google Scholar 

  • Glaenzer, K, Quack, M, Troe, J (1976) A spectroscopic determination of the methyl radical recombination rate constant in shock wave. Chem. Phys. Lett. 39: 304

    Article  ADS  Google Scholar 

  • Golden, DM, Solly, RK, Gac, NA, Benson, SW (1972) Very low pressure pyrolysis. VII: The decomposition of methylhydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine and tetramethylhydrazine. Concerted deamination and dehydrogenation of methylhydrazine. Int. J. Chem. Kinet. 4: 433

    Article  Google Scholar 

  • Gotzig, U, Schulte, G, Dargies, E, Scharli-Weinert, E, Schwende, M (1994) Performance behaviour and status of new generation thruster family for spacecraft propulsion. International Conference on Spacecraft Propulsion, Toulouse, France

  • Halat-Augier, C, Lecouvreur, P, Paillard, C, Dupré, G, Heilmann, F, Lemoullec, L (1994) Explosion hazard due to an adiabatic compression of gaseous hydrazine. International Conference on Spacecraft Propulsion, Toulouse, France

  • Hanson, RK, Salimian, S (1984) Survey of rate constants in the N/H/O system. In: Gardiner WC, Jr, (ed) Combustion Chemistry. Springer, Berlin Heidelberg New York, pp 361–421

    Google Scholar 

  • Hidaka, Y, Shiba, S, Takuma, H, Suga, M (1985) Thermal decomposition of ethane in shock waves. Int. J. Chem. Kinet. 17: 441

    Article  Google Scholar 

  • Kee, RJ, Rupley, FM, Miller, JA (1987) The Chemkin thermodynamic data base. Sandia National Laboratories Report No. SAND87-8215B

  • Kerr, JA, Sekhar, RC, Trotman-Dickenson, AF (1963) The pyrolysis of hydrazines and benzylamines. C−C and N−N bond dissociation energies. J. Chem. Soc. 1963: 3217

    Article  Google Scholar 

  • Lutz, AE, Kee, RJ, Miller, JA (1991) SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Sandia Report SAND87-8248

  • Mertens, JD, Chang, AY, Hanson, RK, Bowman, CT (1989) Reaction kinetics of NH in the shock tube pyrolysis of HNCO. Int. J. Chem. Kinet. 21: 1049

    Article  Google Scholar 

  • Michael, JV, Sutherland, JW, Klemm, RB (1986) Rate constant for the reaction H+NH3 over the temperature range 750–1777 K. J. Phys. Chem. 90: 497

    Article  Google Scholar 

  • Michel, KW, Wagner, HGg (1965) The pyrolysis and oxidation of hydrazine behind shock waves. Tenth Symp. (international) on Combustion, The Combustion Institute, Pittsburgh, PA, 353

  • Miller, JA, Bowman, CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Comb. Sci. 15: 287

    Article  Google Scholar 

  • Palaszewski, B (1992) Metallized propellants for the human exploration of Mars. J. Propulsion and Power 8: 1192

    ADS  Google Scholar 

  • Palaszewski, B (1994) Lunar missions using advanced chemical propulsion: system design issues. J. Spacecraft and Rockets 31: 458

    ADS  Google Scholar 

  • Palaszewski, B, Powell, R (1994) Launch vehicle performance using metallized propellants. J. Propulsion and Power 10: 828

    Article  Google Scholar 

  • Pedley, MD, Bishop, CV, Benz, FJ, Bennett, CA, McClenagan, RD, Fenton, DL, Knystautas, R, Lee, JH, Péraldi, O, Dupré, G, Shepherd, JE (1988) Hydrazine vapor detonations. AIAA Progress in Astronautics and Aeronautics, 114: 45

    Google Scholar 

  • Reynolds, WmC (1987) STANJAN Chemical Equilibrium Solver, V. 3.84 IBM.PC, Stanford University

  • Ritter, ER, Bozzelli, JW (1987) THERM: Thermodynamic property estimation for radicals and molecules, New Jersey Institute of Technology

  • Rosenberg, SD, Schoenman, L (1994) New generation of high-performance engines for spacecraft propulsion. J. Propulsion and Power 10: 40

    Google Scholar 

  • Sanchez de Manrique, K, Hesketh, RP (1994) Development of a detailed chemical kinetic model for combustion of methylamine. Work-in-Progress poster presented at the 25th Symp. (international) on Combustion, Irvine, Ca

  • Schmidt, EW (1984) Hydrazine and its derivatives. Preparation, properties, applications. John Wiley & Sons, New York Chichester Brisbane Toronto Singapore

    Google Scholar 

  • Shepherd, JE (1986) NH3−O2−N2 and N2−H4 detonation modeling. Sandia National Laboratories Report

  • Sherwood, B (1994) Fourth-generation Mars vehicle concepts. J. Spacecraft and Rockets 31: 834

    ADS  Google Scholar 

  • Tsang, W, Hampson, RF (1986) Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data 15: 1087

    ADS  Google Scholar 

  • Tsang, W (1992) Chemical kinetic data base for propellant combustion. II. Reactions involving CN, NCO and HNCO. J. Phys. Chem. Ref. Data 21: 753

    Article  ADS  Google Scholar 

  • Ueda, S, Kuroda, Y, Miyajima, H (1994) Bipropellant performance of N2H4/MMH mixed fuel in a regeneratively cooled engine. J. Propulsion and Power 10: 646

    Google Scholar 

  • Vidyarthi, SK, Willis, C, Back, RA (1976) Thermal and photochemical decomposition of methyldiimide in the gas phase. J. Phys. Chem. 80: 559

    Article  Google Scholar 

  • Weaver, DB, Duke, MB (1993) Mars exploration strategies: a reference design mission. International Aeronautical Federation, Rept. 93-Q.1.383

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catoire, L., Bassin, X., Dupre, G. et al. Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine. Application to detonation sensitivity. Shock Waves 6, 139–146 (1996). https://doi.org/10.1007/BF02510994

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510994

Key words

Navigation