Skip to main content
Log in

Assessment of distributed arterial network models

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the relative importance of elastic non-linearities, viscoelasticity and resistance vessel modelling on arterial pressure and flow wave contours computed with distributed arterial network models. The computational results of a non-linear (time-domain) and a linear (frequency-domain) mode were compared using the same geometrical configuration and identical upstream and downstream boundary conditions and mechanical properties. Pressures were computed at the ascending aorta, brachial and femoral artery. In spite of the identical problem definition, computational differences were found in input impedance modulus (max. 15–20%), systolic pressure (max. 5%) and pulse pressure (max. 10%). For the brachial artery, the ratio of pulse pressure to aortic pulse pressure was practically identical for both models (3%), whereas for the femoral artery higher values are found for the linear model (+10%). The aortic/brachial pressure transfer function indicates that pressure harmonic amplification is somewhat higher in the linear model for frequencies lower than 6 Hz while the opposite is true for higher frequencies. These computational disparities were attributed to conceptual model differences, such as the treatment of geometric tapering, rather than to elastic or convective non-linearities. Compared to the effect of viscoelasticity, the discrepancy between the linear and non-linear model is of the same importance. At peripheral locations, the correct representation of terminal impedance outweights the computational differences between the linear and non-linear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Avolio, A. P. (1980): ‘Multi-branched model of the human arterial system,’Med. Biol. Eng. Comput.,18, pp. 709–718

    Article  Google Scholar 

  • Bergel, D. H. (1969): ‘The viscoelastic properties of the arterial walls. PhD thesis, University of London

  • Hardung, V. (1953): ber eine Methode zur Messung der dynamischen Elasticitt und Viskositt von Blutgefssen, Kautchuk und synthetischen Elastomeren,’Helv. Physiol. Acta,11, pp. 194–211

    Google Scholar 

  • Holenstein, R., Niederer, P., Anliker, M. (1980) ‘A viscoelastic model for use in predicting arterial pulse waves,’J. Biomech. Eng.,102, pp. 318–325

    Article  Google Scholar 

  • Karamanoglu, M., Gallagher, D. E., Avolio, A. P., O’Rourke, M. F. (1994): ‘Functional origin of reflected pressure waves in a multibranched model of the human arterial system,’Am. I. Physiol.,267, pp. H1681-H1688

    Google Scholar 

  • Krus, P., Karlsson, M., Engval, J. ‘Modelling and simulation of the human arterial tree, using transmission line elements with viscoelastic walls,’ BED 1991Adv. Bioeng.,20, pp. 115–118

  • Langewouters, G. J., Wesseling, K. H., Goedhard, W. J. A. (1984): ‘The static elastic properties of 45 human thoracic and 20 abdominal aortas and the parameters of a new model,’J. Biomech.,17, pp. 425–435

    Article  Google Scholar 

  • Langewouters, G. J., Wesseling, K. H., Geodhard, W. J. A. (1985): ‘The pressure dependent dynamic elasticity of 35 thoracic and 16 abdmonal human aortasin vitro described by a five component model,’J. Biomech.,18, pp. 613–620

    Article  Google Scholar 

  • Latham, R. D., Maj, M. C., Westerhof, N., Sipkema, P., Rubal, B. J., Reuderink, P., Murgo, J. P. (1985): ‘Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures,’Circulation,72, pp. 1257–1269

    Google Scholar 

  • Learoyd, B. M., Taylor, M. G. (1966): ‘Alterations with age in the viscoelastic properties of human arterial walls,’Cir. Res. 18, pp. 278–291

    Google Scholar 

  • Mills, C. J., Gabe, T., Gault, J. H., Mason, D. T., Ross, J., Braunwald, E., Shillingford, J. P. (1970): ‘Pressure-flow relationships and vascular impedance in man,’Cardiovasc. Res.,4, 405–417

    Article  Google Scholar 

  • Milnor, W. R. (1989): ‘Hemodynamics.’ Second ed. (Williams & Wilins, Baltimore).

    Google Scholar 

  • Murgo, J. P., Westerhof, N., Giolma, J. P., Altobelli, S. A. (1980): ‘Aortic input impedance in normal man: relationship to pressure wave forms,’Circulation,62 (1), pp. 105–116

    Google Scholar 

  • Reuderink, P. J., Hoogstraten, H. W., Sipkema, P., Hillen, B., Westerhof, N. (1989): ‘Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers,’J. Biomech.,22, pp. 819–827

    Article  Google Scholar 

  • Reuderink, P. J., van de Vosse, F. N., van Steenhoven, A. A., van Dongen, M. E. H., Janssen, J. D. (1993): ‘Incompressible low-speed-ratio in non-uniform distensible tubes,’Int. J. Num. Meth. Fluids,16, pp. 597–612

    Article  MATH  Google Scholar 

  • Schaaf, B. W., Abbrecht, P. H. (1972): ‘Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model,’J. Biomech.,5, 345–364

    Article  Google Scholar 

  • Sheng, G., Sarwal, S. N., Watts, K. C., Mable, A. E. (1995): ‘Computational simulation of blood flow in human systemic circulation incorporating an external force field,’Med. Biol. Eng. Comput.,33, pp. 8–17

    Google Scholar 

  • Snyder, M. F., Rideout, V. C., Hillest, R. J. (1968): ‘Computer modelling of the human systemic arterial tree,’J. Biomech.,1, pp. 341–353

    Article  Google Scholar 

  • Stergiopulos, N., Young, D. F., Rogge, T. R. (1992): ‘Computer simulation of arterial flow with applications to arterial and aortic stenoses,’J. Biomech.,25 (12), pp. 1477–1488

    Article  Google Scholar 

  • Stergiopulos, N., Meister, H., Westerhof, N. (1995): ‘Evaluation of methods for the estimation of total arterial compliance,’Am. J. Physiol.,268, pp. H1540-H1548

    Google Scholar 

  • Wemple, R. R., Mockros, I. F., ‘Pressure and flow in the systemic arterial system,’J. Biomech.,5, pp. 629–641

  • Westerhof, N., Bosman, E., de Vries, C. J., Noordergraaf, A. (1969): ‘Analog studies of the human systemic arterial tree,’J. Biomech.,2, pp. 121–143

    Article  Google Scholar 

  • Westerhof, N., Noordergraaf, A., (1970): ‘Arterial viscoelasticity: a generalised model. Effect on impedance and wave travel in the systemic tree,’J. Biomech.,3, pp. 357–379

    Article  Google Scholar 

  • Wesseling, K. H., Weber, H., de Wit, B. (1973): ‘Estimated five component viscoleastic model parameters for human arterial walls,’J. Biomech.,6, pp. 13–24

    Article  Google Scholar 

  • Womersley, J. R. (1957): ‘An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries.’ Wright Air Development Centre, Technical Report WADC-TR 56-614

  • Young, D. F., Tsai, F. (1973): ‘Flow characteristics in models of arteriol stenoses-II. Unsteady flow,’J. Biomech.,6, 547–559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Segers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segers, P., Stergiopulos, N., Verdonck, P. et al. Assessment of distributed arterial network models. Med. Biol. Eng. Comput. 35, 729–736 (1997). https://doi.org/10.1007/BF02510985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510985

Keywords

Navigation