Skip to main content
Log in

A stochastic computer model for simulating population growth

  • Published:
Researches on Population Ecology

Summary

A model is described for investigating the interactions of age-specific birth and death rates, age distribution and density-governing factors determining the growth form of single-species populations. It employs Monte Carlo techniques to simulate the births and deaths of individuals while density-governing factors are represented by simple algebraic equations relating survival and fecundity to population density. In all respects the model’s behavior agrees with the results of more conventional mathematical approaches, including the logistic model andLotka’s Law, which predicts a relationship betwen age-specific rates, rate of increase and age distribution.

Situations involving exponential growth, three different age-independent density functions affecting survival, three affecting fecundity and their nine combinations were tested. The one function meeting the assumptions of the logistic model produced a logistic growth curve embodying the correct values orr m andK. The others generated sigmoid curves to which arbitrary logistic curves could be fitted with varying success. Because of populational time lags, two of the functions affecting fecundity produced overshoots and damped oscillations during the initial approach to the steady state.

The general behavior of age-dependent density functions is briefly explored and a complex example is described that produces population fluctuations by an egg cannibalism mechanism similar to that found in the flour beetleTribolium.

The model is free of inherent time lags found in other discrete time models yet these may be easily introduced. Because it manipulates separate individuals, the model may be combined readily with the Monte Carlo simulation models of population genetics to study eco-genetic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. W., andC. E. King (1970) Age-specific selection.Proc. Nat. Acad. Sci. 66: 780–786.

    Article  PubMed  CAS  Google Scholar 

  • Andrewartha, H. G., andL. C. Birch (1954)The distribution and abundance of animals. Univ. of Chicago Press.

  • Bartlett, M. S. (1960)Stochastic population models in ecology and epidemiology. Methuen.

  • Engstrom-Heg, Verna Louise (1970) Predation, competition and environmental variables: some mathematical models.J. Theoret. Biol. 27: 175–195.

    Article  CAS  Google Scholar 

  • Frank, P. W. (1960) Prediction of population growth form inDaphnia pulex cultures.Amer. Nat. 94: 357–372.

    Article  Google Scholar 

  • Fujii, K. (1975) A general simulation model for laboratory insect populations. I. From cohort of eggs to adult emergence.Res. Popul. Ecol. 17: 85–133.

    Google Scholar 

  • King, C. E., andW. W. Anderson (1971) Age-specific selection. II The interaction between r and K during population growth.Amer. Nat. 105: 137–156.

    Article  Google Scholar 

  • Landahl, H. D. (1955a) A mathematical model for the temporal pattern of a population structure, with particular reference to the flour beetle.Bull. Math. Biophysics 17: 63–77.

    Article  Google Scholar 

  • Landahl, H. D. (1955b) A mathematical model for the temporal pattern of a population structure, with particular reference to the flour beetle. II. Competition between species.Bull. Math. Biophysics 17: 131–140.

    Article  Google Scholar 

  • Lefkovitch, L. P. (1962) An experimental and theoretical approach to the age structure of populations of continuously breeding animals.XI Intern. Congr. Ent. Vienna. 1960.II: 309–313.

    Google Scholar 

  • Lefkovitch L. P. (1965) The study of population growth in organisms grouped by stages.Biometrics 21: 1–18.

    Article  Google Scholar 

  • Leslie, P. H. (1945) On the use of matrices in certain population mathematics.Biometrika 33: 183–212.

    Article  Google Scholar 

  • Leslie, P. H. (1948) Some further notes on the use of matrices in population mathematics.Biometrika 35: 213–245.

    Article  Google Scholar 

  • Leslie, P. H. (1957) An analysis of the data for some experiments carried out byGause with populations of the protozoa,Paramecium aurelia andParamecium caudatum.Biometrika 44: 314–327.

    Article  Google Scholar 

  • Leslie, P. H. (1958) A stochastic model for studying the properties of certain biological systems by numerical methods.Biometrika 45: 16–31.

    Article  Google Scholar 

  • Leslie, P. H. (1959) The properties of a certain lag type of population growth and the influence of an external random factor on a number of such populations.Physiol. Zool. 32(3): 151–159.

    Google Scholar 

  • Levin, B. R. (1967) The effect of reproductive compensation on the long term maintenance of the Rh polymorphism: the Rh cross revisited.Amer. Jour. Human Genetics 19: 288–392.

    CAS  Google Scholar 

  • Lloyd, M. (1968) Self-regulation of adult numbers by cannibalism in two laboratory strains of flour beetles (Tribolium castaneum).Ecology 49(2): 245–259.

    Article  Google Scholar 

  • Lotka, A. J. (1907) Relation between birth rates and death rates.Science 26: 21–22.

    Article  PubMed  Google Scholar 

  • Lotka, A. J. (1956)Elements of mathematical biology. Dover publications, N. Y.

    Google Scholar 

  • MacCluer, J. W. (1967) Monte Carlo methods in human population genetics; a computer model incorporating age-specific birth and death rates.Amer. Jour. Human Genetics 19(3): 303–312.

    CAS  Google Scholar 

  • Niven, B. S. (1967) The stochastic simulation ofTribolium populations.Physiol Zool. 40: 67–82.

    Google Scholar 

  • Niven, B. S. (1969) Simulation of two interacting species ofTribolium.Physiol. Zool. 42: 248–255.

    Google Scholar 

  • Niven, B. S. (1970) Mathematics of populatons of the quokka,Setonix brachyurus (Marsupialia). I. A simple deterministic model for quokka populations.Aust. Jour. Zool. 18: 209–214.

    Article  Google Scholar 

  • Noyes, Bessie (1922) Experimental studies on the life-history of a rotifer reproducing parthenogentiaally (Proales decipens).Jour. Exp. Zool. 35: 225–255.

    Article  CAS  Google Scholar 

  • Park, T. (1954) Experimental studies of interspecies competition in two species ofTribolium.Physiol. Zool. 27(2): 177–238.

    Google Scholar 

  • Park, T., D. B. Mertz, W. Grodzinski, andT. Prus (1965) Cannibalistic predation in populations of flour beetles.Physiol. Zool. 38(3): 289–321.

    Google Scholar 

  • Pearl, R., andJ. R. Miner (1935) Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms.Quart. Rev. Biol. 10: 600–679.

    Article  Google Scholar 

  • Pennycuick, C. J., R. M. Compton, andLinda Beckingham (1968) A computer model for simulating the growth of a population or of two interacting populations.J. Theoret. Biol. 18: 316–329.

    Article  CAS  Google Scholar 

  • Pennycuick, Linda (1969) A computer model of the Oxford great tit population.J. Theroet. Biol. 22: 381–400.

    Article  CAS  Google Scholar 

  • Pollard, J. H. (1966) On the use of the direct matrix product in analysing certain stochastic population models.Biometrika 53: 397–415.

    Article  Google Scholar 

  • Rohlf, F. J., andG. D. Schnell (1971) An investigation of the isolation-by-distance model.Amer. Nat. 105: 295–324.

    Article  Google Scholar 

  • Schull, W. J., andB. R. Levin (1964) Monte Carlo simulation: Some uses in the genetic study of primitive man. InStochastic models in medicine and biology (Ed. byJ. Gurland), Madison. Univ. of Wisconsin Press: 179–196.

    Google Scholar 

  • Sharpe, F. R., andA. J. Lotka (1911) A problem in age distribution.Phil. Mag. 21: 435–438.

    Google Scholar 

  • Slobodkin, L. B. (1954) Population dynamics inDaphnia obtusa.Kurz.Ecol. Monogr. 24: 69–88.

    Article  Google Scholar 

  • Sokal, R. R., andF. J. Sonleitner (1968) The ecology of selection in hybrid population ofTribolium castaneum.Ecol. Monogr. 38: 345–379.

    Article  Google Scholar 

  • Sonleitner, F. J. (1971) Computer simulation of a laboratory population ofTribolium (Coleoptera).Proc. XIII Intern. Congr. Ent., Moscow. 1968.I: 560–561.

    Google Scholar 

  • Taylor, N. W. (1967) A mathematical model forTribolium confusum populations.Ecology 48(2): 290–293.

    Article  Google Scholar 

  • Taylor, N. W. (1968) A mathematical model for twoTribolium populations in competition.Ecology 49(5): 843–848.

    Article  Google Scholar 

  • Usher, M. B. (1969) A matrix model for forest management.Biometrics 25: 309–315.

    Article  Google Scholar 

  • Usher, M. B., andM. H. Williamson (1970) A deterministic matrix model for handling the birth, death and migration processes of spatially distributed populations.Biometrics 26: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Wangersky, P. J., andW. J. Cunningham (1957) Time lag in population models.Cold Spring Harbor Symposia on Quantitative Biology 22: 329–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonleitner, F.J. A stochastic computer model for simulating population growth. Res Popul Ecol 19, 10–32 (1977). https://doi.org/10.1007/BF02510937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510937

Keywords

Navigation