Advertisement

Russian Physics Journal

, Volume 40, Issue 3, pp 245–250 | Cite as

Nondeliquescent quasiclassical wave packets for the Schrödinger equation with Pöschl-Teller potential pit

  • A. M. Rogova
  • A. Yu. Trifonov
Physics of Elementary Particles and Field Theory
  • 13 Downloads

Abstract

Within the framework of nonrelativistic quantum mechanics, a method of constructing nondeliquescent wave packets is proposed for potentials that decrease at infinity. A nondeliquescent wave packet for the Pöschl-Teller potential pit is constructed.

Keywords

Wave Packet Classical Particle SchrOdinger Equation Schr0dinger Equation Effective Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    v. G. Bagrov and V. V. Belov, TMF,74, No. 2, 316–319 (1988).MathSciNetGoogle Scholar
  2. 2.
    V. V. Belov, D. V. Boltovsky, A. M. Rogova, and A. Yu. Trifonov, Proc. 5th and 6th Lomonosov Conf. “Elementary Particle Physics,” Yaroslavl (1992), pp. 143–151.Google Scholar
  3. 3.
    V. G. Bagrov, V. V. Belov, and A. M. Rogova, TMF,90, No. 1, 84–94 (1992).MathSciNetGoogle Scholar
  4. 4.
    V. V. Belov and A. M. Rogova, Izv. Vuzov. Fizika,37 No. 6, 94–99 (1994).Google Scholar
  5. 5.
    B. G. Bagrov, V. V. Belov, and I. M. Ternov, TMF,50, No. 3, 390–396 (1982).MathSciNetGoogle Scholar
  6. 6.
    V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, Ann. Phys. (N.Y.),246, No. 2, 231–290 (1996).MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    V. P. Maslov, Integrated Wentzel-Kramers-Brillouin Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. M. Rogova
  • A. Yu. Trifonov

There are no affiliations available

Personalised recommendations