Medical and Biological Engineering and Computing

, Volume 33, Issue 5, pp 676–682 | Cite as

Effects of electrode geometry and combination on nerve fibre selectivity in spinal cord stimulation

  • J. Holsheimer
  • J. J. Struijk
  • N. R. Tas
Biomedical Engineering

Abstract

The differential effects of the geometry of a rostrocaudal array of electrode contacts on dorsal column fibre and dorsal root fibre activation in spinal cord stimulation are analysed theoretically. 3-D models of the mid-cervical and mid-thoracic vertebral areas are used for the computation of stimulation induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of large dorsal column and dorsal root fibres. The size and spacing of 2-D rectangular electrode contacts are varied while mono-, bi- and tripolar stimulation are applied. The model predicts that the highest preferential stimulation of dorsal root fibres is obtained in monopolar stimulation with a large cathode, whereas dorsal column fibre preference is highest in tripolar stimulation with small contacts and small contact spacings. Fibre type preference is most sensitive to variations of rostrocaudal contact size and least sensitive to variations of lateral contact size. Dorsal root fibre preference is increased and sensitivity to lead geometry is reduced as the distance from contacts to spinal cord is increased.

Keywords

Computer modelling Dorsal columns Dorsal roots Electrode combination Electrode geometry Electrical stimulation Selective stimulation Spinal cord stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barolat, G., Massaro, F., He, J., Zeme, S., andKetcik, B. (1993): ‘Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man’,J. Neurosurg.,78, pp. 233–239CrossRefGoogle Scholar
  2. Barolat, G., Zeme, S., andKetcik, B. (1991): ‘Multifactorial analysis of epidural spinal cord stimulation’,Stereotact. Funct. Neurosurg.,56, pp. 77–103Google Scholar
  3. Coburn, B. (1985): ‘A theoretical study of epidural electrical stimulation of the spinal cord—Part II. Effect on long myelinated fibers’,IEEE Trans.,BME-32, pp. 978–986Google Scholar
  4. Dimitrijevic, M. R., Faganel, J., Sharkey, P.C., andSherwood, A. M. (1980): ‘Study of sensation and muscle twitch responses to spinal cord stimulation’,Int. Rehab. Med.,2, pp. 76–81Google Scholar
  5. Geddes, L. A., andBaker, L. E. (1967): ‘The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist’,Med. Biol. Eng.,5, pp. 271–293CrossRefGoogle Scholar
  6. Holsheimer, J., andStruijk, J. J. (1987): ‘Electrode combination and specificity in spinal cord stimulation’. Proc. IXth Conf. on Advances in External Control of Human Extremities, Belgrade, pp. 393–404Google Scholar
  7. Holsheimer, J., andStruijk, J. J. (1991): ‘How do geometric factors influence epidural spinal cord stimulation? a quantitative analysis by computer modelling’,Stereotact. Funct. Neurosurg.,56, pp. 234–249Google Scholar
  8. Holsheimer, J., andStruijk, J. J. (1992): ‘Electrode geometry and preferential stimulation of spinal nerve fibers having different orientations: a modelling study’. Proc. 14th Ann. Int. Conf. of IEEE Eng in Med. & Biol. Soc., Paris, France, pp. 1374–1375Google Scholar
  9. Holsheimer, J., Struijk, J. J., andSmink, J. (1992): ‘Effect of lead geometry and combination in ESCS’. Proc. 1st Int. Congress of Int. Neuromodulation Soc., Rome, Italy,abstract 75 Google Scholar
  10. Holsheimer, J., Den Boer, J. A., Struijk, J. J., andRozeboom, A. R. (1994): ‘MR assessment of the normal position of the spinal cord in the spinal canal,’Am. J. Neuroradiol.,15, pp. 951–959Google Scholar
  11. Jobling, D. T., Tallis, R. C., Sedgwick, E. M., andIllis, L. S. (1980): ‘Electronic aspects of spinal-cord stimulation in multiple sclerosis,’Med. Biol. Eng. Comp.,18, pp. 48–56CrossRefGoogle Scholar
  12. Law, J. D. (1983): ‘Spinal stimulation: Statistical superiority of monophasic stimulation of narrowly separated, longitudinal bipoles having rostral cathodes,’Appl. Neurophysiol.,46, pp. 129–137Google Scholar
  13. Law, J. D. (r1987): ‘Targeting a spinal stimulator to treat the “failed back surgery syndrome”,ibid.,50, pp. 437–438Google Scholar
  14. Law, J. D., andMiller, L. V. (1982): ‘Importance and documentation of an epidural stimulating position’,ibid.,45, pp. 461–464Google Scholar
  15. McNeal, D. R. (1976): ‘Analysis of a model for excitation of myelinated nerve’,IEEE Trans.,BME-23, pp. 329–337Google Scholar
  16. Melzack, R., andWall, P. D. (1965): ‘Pain mechanisms: a new theory’,Sci. 150,Appl. Neurophysiol., pp. 971–979CrossRefGoogle Scholar
  17. North, R. B. (1993): ‘Spinal cord stimulation for chronic, intractable pain’ in ‘Electrical and magnetic stimulation of the brain and spinal cord’Devinski, O., Beric, A., Dogali, M. (Eds.) (Raven Press, New York) pp. 289–301Google Scholar
  18. North, R. B., Ewend, M. G., Lawton, M. T., andPiantadosi, S. (1991): ‘Spinal cord stimulation for chronic, intractable pain: superiority of “multi-channel” devices’,Pain,44, pp. 119–130CrossRefGoogle Scholar
  19. Rattay, F. (1986): ‘Analysis of models for external stimulation of axons’,IEEE Trans.,BME-33, pp. 974–977Google Scholar
  20. Rattay, F. (1987): ‘Ways to approximate current-distance relations for electrically stimulated fibers’,J. Theor. Biol.,125, pp. 339–349CrossRefGoogle Scholar
  21. Rijkhoff, N. J. M., Holsheimer, J., Koldewijn, E. L., Struijk, J. J., Van Kerrebroeck, P. E. V., Debruyne, F. M. J. andWijkstra, H. (1994): ‘Selective stimulation of sacral nerve roots for bladder control; a study by computer modeling’,IEEE Trans.,BME-41, pp. 413–424Google Scholar
  22. Shealy, C. N. (1974): ‘Electrical control of the nervous system’,Med. Progr. Technol. 2, pp. 71–80Google Scholar
  23. Shealy, C. N., Mortimer, J. T., andReswick, J. B. (1967): ‘Electrical inhibition of pain by stimulation of the dorsal columns: Preliminary clinical report’,Anesth. Analg. 46, pp. 489–491Google Scholar
  24. Struijk, J. J., Holsheimer, J., Barolat, G., He, J., andBoom, H. B. K. (1993a): ‘Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data’,IEEE Trans.,RE-1, pp. 101–108Google Scholar
  25. Struijk, J. J., Holsheimer, J., andBoom, H. B. K. (1993b): ‘Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study’,IEEE Trans,BME-40, pp. 632–639Google Scholar
  26. Struijk, J. J., Holsheimer, J., Van der Heide, G. G., andBoom, H. B. K. (1992): ‘Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching’,IEEE Trans. BME-39, pp. 903–912Google Scholar
  27. Struijk, J. J., Holsheimer, J., Van Veen, B. K., andBoom, H. B. K. (1991): ‘Epidural spinal cord stimulation: Calculation of field potentials with special reference to dorsal column nerve fibers’,IEEE Trans.,BME-38, pp. 104–110Google Scholar
  28. Tulgar, M., Barolat, G., andKetcik, B. (1993): ‘Analysis of parameters for epidural spinal cord stimulation. 1. Perception and tolerance thresholds resulting from 1,100 combinations’,Stereotact. Funct. Neurosurg.,61, pp. 129–139Google Scholar
  29. Wall, P. D., andSweet, W. H. (1967): ‘Temporary abolition of pain in man’,Sci.,155, pp. 108–109CrossRefGoogle Scholar

Copyright information

© IFMBE 1995

Authors and Affiliations

  • J. Holsheimer
    • 1
  • J. J. Struijk
    • 1
  • N. R. Tas
    • 1
  1. 1.Institute for Biomedical TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations