Abstract
The stability of speculated red blood cells, induced by intercalation of amphiphilic molecules into the cell membrane, is studied. It is assumed that the stable red blood cell shape corresponds to the minimum of its membrane elastic energy, which consists of the local and non-local bilayer bending energies and of the skeleton shear elastic energy. The cell volume and the membrane area are kept constant. It is calculated that the number of spicules of the stable echinocytic shape is larger when the amphiphile concentration is higher, which is in agreement with experimental observations. Also, it is established that, in explaining the stability of the echinocytic shape of the red blood cell, it is necessary to include the membrane skeleton shear elasticity.
References
Berndl, K., Käs, J., Lipowsky, R., Sackmann, E., andSeifert, U. (1990): ‘Shape transformations of giant vesicles: extreme sensitivity to bilayer asymetry’,Europhys. Lett.,13, pp. 659–664
Bretcher, G. andBessis, M. (1972): ‘Present status of spiculated red cells and their relationship to the discocyte-echinocyte transformation: A critical review’,Blood,40, pp. 333–344
Deuticke, B. (1968): ‘Transformation and restoration of biconcave shape of human erythrocyte induced amphiphilic agents and change of ionic environment’,Biochim. Biophys. Acta,163, pp. 494–500
Evans, E. A. (1974): ‘Bending resistance and chemically induced moments in membrane bilayers’,Biophys. J.,14, pp. 923–931
Evans, E., andSkalak, R. (1980): ‘Mechanics and thermodynamics of biomembranes’ (CRC Press, Boca Raton, Florida), pp. 160–166
Gedde, M. M., Yang, E. andHuestis, H. (1995): ‘Shape response of human erythrocyte to altered cell pH’,Blood,86, pp. 1595–1599
Helfrich, W. (1973): ‘Elastic properties of lipid bilayers: theory and possible experiments’,Z. Natursforsch.,28C, pp. 693–703
Iglič, A., Svetina, S., andŽekš, B. (1995): ‘Depletion of membrane skeleton in red blood cell vesicles’,Biophys. J.,69, PP. 274–279
Iglič, A., Svetina, S. andŽekš, B. (1996): ‘A role of membrane skeleton in discontinous red blood cell shape transformations’,Cell. Mol. Biol. Lett.,1, pp. 137–144
Iglič, A. (1997): ‘A possible mechanism determining the stability of spiculated red blood cells’,J. Biomech.,30, pp. 35–40
Isomaa, B., Hägerstrand, H. andPaatero, G. (1987): ‘Shape transformations induced by amphiphiles in erythrocytes’,Biochim. Biophys. Acta,899, pp. 93–103
Käs, J. andSackman, E. (1991): ‘Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes’,Biophys. J.,60, pp. 825–844
Landman, K. A. (1984): ‘A continuum model for a red blood cell transformation: Sphere to crenated sphere’,J. Theor. Biol.,106, pp. 329–351
Miao, L., Seifert, U., Wortis, M. andDöbereiner, H. G. (1994): ‘Budding transitions of fluid-bilayer vesicles; the effect of area difference elasticity’,Phys. Rev. E,49, pp. 5389–5407
Mohandas, N. andEvans, E. (1994): ‘Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects’,Ann. Rev. Biophys. Biomol. Struct.,23, pp. 787–818
Ohnishi, S. T. andAsai, H. (1985): ‘Lamprey erythrocytes lack glycoproteins and anion transport’,Comp. Biochem. Physiol.,81B, pp. 405–407
Sheetz, M. P., andSinger, S. J. (1974): ‘Biological membranes as bilayer coples. A mechanism of drug-ertythrocyte interactions’,Proc. Natl. Acad. Sci.,71, pp. 4457–4461
Sheetz, M. P. (1983): ‘Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape’,Semin. Hematol.,20, pp. 175–188
Sikorski, A., Bialkowska, K. (1996): ‘Interactions of spectrin with membrane intrinsic domain’,Cell. Mol. Biol. Lett.,1, pp. 97–104
Stokke, B. T., Mikkelsen, A. andElgsaeter, A. (1986): ‘The human erythrocyte membrane skeleton may be an ionic gel II. Numerocal analyses of cell shapes and shape transformations’,Eur. Biophys. J.,13, pp. 219–233
Svetina, S., andŽekš, B. (1996): ‘Elastic properties of closed bilayer membranes and the shapes of giant phospholipid vesicles’,in Lasic, D. D. andBarenholz, Y. (Eds.): ‘Handbook of non-medical applications of liposones’ (CRC Press, Boca Raton, Florida) pp. 13–42
Waugh, R. E. andEvans, E. A. (1979): ‘Thermoelasticity of red blood cell membrane’,Biophys. J.,26, pp. 115–131
Waugh, R. E., Song, J., Svetina, S., andŽekš, B. (1992): ‘Local and non-local curvature elasticity in bilayer membranes by tether formation from lecithin vesicles’,Biophys. J.,61, pp. 974–982
Waugh, R. E. (1996): ‘Elastic energy of curvature-driven bump formation on red blood cell membrane’,Biophys. J.,70, pp. 1027–1035
Zarda, P. R., Chien, S. andSkalak, R. (1977): ‘Elastic deformations of red blood cells’,J. Biomech.,10, pp. 211–221
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Iglič, A., Kralj-Iglič, V. & Hägerstrand, H. Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane. Med. Biol. Eng. Comput. 36, 251–255 (1998). https://doi.org/10.1007/BF02510754
Received:
Issue Date:
Keywords
- Red blood cell
- Cell shape stability
- Echinocyte
- Membrane skeleton
- Membrane elastic energy