Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane

Abstract

The stability of speculated red blood cells, induced by intercalation of amphiphilic molecules into the cell membrane, is studied. It is assumed that the stable red blood cell shape corresponds to the minimum of its membrane elastic energy, which consists of the local and non-local bilayer bending energies and of the skeleton shear elastic energy. The cell volume and the membrane area are kept constant. It is calculated that the number of spicules of the stable echinocytic shape is larger when the amphiphile concentration is higher, which is in agreement with experimental observations. Also, it is established that, in explaining the stability of the echinocytic shape of the red blood cell, it is necessary to include the membrane skeleton shear elasticity.

References

  1. Berndl, K., Käs, J., Lipowsky, R., Sackmann, E., andSeifert, U. (1990): ‘Shape transformations of giant vesicles: extreme sensitivity to bilayer asymetry’,Europhys. Lett.,13, pp. 659–664

    Google Scholar 

  2. Bretcher, G. andBessis, M. (1972): ‘Present status of spiculated red cells and their relationship to the discocyte-echinocyte transformation: A critical review’,Blood,40, pp. 333–344

    Google Scholar 

  3. Deuticke, B. (1968): ‘Transformation and restoration of biconcave shape of human erythrocyte induced amphiphilic agents and change of ionic environment’,Biochim. Biophys. Acta,163, pp. 494–500

    Article  Google Scholar 

  4. Evans, E. A. (1974): ‘Bending resistance and chemically induced moments in membrane bilayers’,Biophys. J.,14, pp. 923–931

    Google Scholar 

  5. Evans, E., andSkalak, R. (1980): ‘Mechanics and thermodynamics of biomembranes’ (CRC Press, Boca Raton, Florida), pp. 160–166

    Google Scholar 

  6. Gedde, M. M., Yang, E. andHuestis, H. (1995): ‘Shape response of human erythrocyte to altered cell pH’,Blood,86, pp. 1595–1599

    Google Scholar 

  7. Helfrich, W. (1973): ‘Elastic properties of lipid bilayers: theory and possible experiments’,Z. Natursforsch.,28C, pp. 693–703

    Google Scholar 

  8. Iglič, A., Svetina, S., andŽekš, B. (1995): ‘Depletion of membrane skeleton in red blood cell vesicles’,Biophys. J.,69, PP. 274–279

    Google Scholar 

  9. Iglič, A., Svetina, S. andŽekš, B. (1996): ‘A role of membrane skeleton in discontinous red blood cell shape transformations’,Cell. Mol. Biol. Lett.,1, pp. 137–144

    Google Scholar 

  10. Iglič, A. (1997): ‘A possible mechanism determining the stability of spiculated red blood cells’,J. Biomech.,30, pp. 35–40

    Article  Google Scholar 

  11. Isomaa, B., Hägerstrand, H. andPaatero, G. (1987): ‘Shape transformations induced by amphiphiles in erythrocytes’,Biochim. Biophys. Acta,899, pp. 93–103

    Article  Google Scholar 

  12. Käs, J. andSackman, E. (1991): ‘Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes’,Biophys. J.,60, pp. 825–844

    Google Scholar 

  13. Landman, K. A. (1984): ‘A continuum model for a red blood cell transformation: Sphere to crenated sphere’,J. Theor. Biol.,106, pp. 329–351

    Article  Google Scholar 

  14. Miao, L., Seifert, U., Wortis, M. andDöbereiner, H. G. (1994): ‘Budding transitions of fluid-bilayer vesicles; the effect of area difference elasticity’,Phys. Rev. E,49, pp. 5389–5407

    Article  Google Scholar 

  15. Mohandas, N. andEvans, E. (1994): ‘Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects’,Ann. Rev. Biophys. Biomol. Struct.,23, pp. 787–818

    Article  Google Scholar 

  16. Ohnishi, S. T. andAsai, H. (1985): ‘Lamprey erythrocytes lack glycoproteins and anion transport’,Comp. Biochem. Physiol.,81B, pp. 405–407

    Google Scholar 

  17. Sheetz, M. P., andSinger, S. J. (1974): ‘Biological membranes as bilayer coples. A mechanism of drug-ertythrocyte interactions’,Proc. Natl. Acad. Sci.,71, pp. 4457–4461

    Article  Google Scholar 

  18. Sheetz, M. P. (1983): ‘Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape’,Semin. Hematol.,20, pp. 175–188

    Google Scholar 

  19. Sikorski, A., Bialkowska, K. (1996): ‘Interactions of spectrin with membrane intrinsic domain’,Cell. Mol. Biol. Lett.,1, pp. 97–104

    Google Scholar 

  20. Stokke, B. T., Mikkelsen, A. andElgsaeter, A. (1986): ‘The human erythrocyte membrane skeleton may be an ionic gel II. Numerocal analyses of cell shapes and shape transformations’,Eur. Biophys. J.,13, pp. 219–233

    Google Scholar 

  21. Svetina, S., andŽekš, B. (1996): ‘Elastic properties of closed bilayer membranes and the shapes of giant phospholipid vesicles’,in Lasic, D. D. andBarenholz, Y. (Eds.): ‘Handbook of non-medical applications of liposones’ (CRC Press, Boca Raton, Florida) pp. 13–42

    Google Scholar 

  22. Waugh, R. E. andEvans, E. A. (1979): ‘Thermoelasticity of red blood cell membrane’,Biophys. J.,26, pp. 115–131

    Google Scholar 

  23. Waugh, R. E., Song, J., Svetina, S., andŽekš, B. (1992): ‘Local and non-local curvature elasticity in bilayer membranes by tether formation from lecithin vesicles’,Biophys. J.,61, pp. 974–982

    Google Scholar 

  24. Waugh, R. E. (1996): ‘Elastic energy of curvature-driven bump formation on red blood cell membrane’,Biophys. J.,70, pp. 1027–1035

    Article  Google Scholar 

  25. Zarda, P. R., Chien, S. andSkalak, R. (1977): ‘Elastic deformations of red blood cells’,J. Biomech.,10, pp. 211–221

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. A. Iglič.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iglič, A., Kralj-Iglič, V. & Hägerstrand, H. Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane. Med. Biol. Eng. Comput. 36, 251–255 (1998). https://doi.org/10.1007/BF02510754

Download citation

Keywords

  • Red blood cell
  • Cell shape stability
  • Echinocyte
  • Membrane skeleton
  • Membrane elastic energy