Advertisement

Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane

  • A. IgličEmail author
  • V. Kralj-Iglič
  • H. Hägerstrand
Cellular Engineering

Abstract

The stability of speculated red blood cells, induced by intercalation of amphiphilic molecules into the cell membrane, is studied. It is assumed that the stable red blood cell shape corresponds to the minimum of its membrane elastic energy, which consists of the local and non-local bilayer bending energies and of the skeleton shear elastic energy. The cell volume and the membrane area are kept constant. It is calculated that the number of spicules of the stable echinocytic shape is larger when the amphiphile concentration is higher, which is in agreement with experimental observations. Also, it is established that, in explaining the stability of the echinocytic shape of the red blood cell, it is necessary to include the membrane skeleton shear elasticity.

Keywords

Red blood cell Cell shape stability Echinocyte Membrane skeleton Membrane elastic energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berndl, K., Käs, J., Lipowsky, R., Sackmann, E., andSeifert, U. (1990): ‘Shape transformations of giant vesicles: extreme sensitivity to bilayer asymetry’,Europhys. Lett.,13, pp. 659–664Google Scholar
  2. Bretcher, G. andBessis, M. (1972): ‘Present status of spiculated red cells and their relationship to the discocyte-echinocyte transformation: A critical review’,Blood,40, pp. 333–344Google Scholar
  3. Deuticke, B. (1968): ‘Transformation and restoration of biconcave shape of human erythrocyte induced amphiphilic agents and change of ionic environment’,Biochim. Biophys. Acta,163, pp. 494–500CrossRefGoogle Scholar
  4. Evans, E. A. (1974): ‘Bending resistance and chemically induced moments in membrane bilayers’,Biophys. J.,14, pp. 923–931Google Scholar
  5. Evans, E., andSkalak, R. (1980): ‘Mechanics and thermodynamics of biomembranes’ (CRC Press, Boca Raton, Florida), pp. 160–166Google Scholar
  6. Gedde, M. M., Yang, E. andHuestis, H. (1995): ‘Shape response of human erythrocyte to altered cell pH’,Blood,86, pp. 1595–1599Google Scholar
  7. Helfrich, W. (1973): ‘Elastic properties of lipid bilayers: theory and possible experiments’,Z. Natursforsch.,28C, pp. 693–703Google Scholar
  8. Iglič, A., Svetina, S., andŽekš, B. (1995): ‘Depletion of membrane skeleton in red blood cell vesicles’,Biophys. J.,69, PP. 274–279Google Scholar
  9. Iglič, A., Svetina, S. andŽekš, B. (1996): ‘A role of membrane skeleton in discontinous red blood cell shape transformations’,Cell. Mol. Biol. Lett.,1, pp. 137–144Google Scholar
  10. Iglič, A. (1997): ‘A possible mechanism determining the stability of spiculated red blood cells’,J. Biomech.,30, pp. 35–40CrossRefGoogle Scholar
  11. Isomaa, B., Hägerstrand, H. andPaatero, G. (1987): ‘Shape transformations induced by amphiphiles in erythrocytes’,Biochim. Biophys. Acta,899, pp. 93–103CrossRefGoogle Scholar
  12. Käs, J. andSackman, E. (1991): ‘Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes’,Biophys. J.,60, pp. 825–844Google Scholar
  13. Landman, K. A. (1984): ‘A continuum model for a red blood cell transformation: Sphere to crenated sphere’,J. Theor. Biol.,106, pp. 329–351CrossRefGoogle Scholar
  14. Miao, L., Seifert, U., Wortis, M. andDöbereiner, H. G. (1994): ‘Budding transitions of fluid-bilayer vesicles; the effect of area difference elasticity’,Phys. Rev. E,49, pp. 5389–5407CrossRefGoogle Scholar
  15. Mohandas, N. andEvans, E. (1994): ‘Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects’,Ann. Rev. Biophys. Biomol. Struct.,23, pp. 787–818CrossRefGoogle Scholar
  16. Ohnishi, S. T. andAsai, H. (1985): ‘Lamprey erythrocytes lack glycoproteins and anion transport’,Comp. Biochem. Physiol.,81B, pp. 405–407Google Scholar
  17. Sheetz, M. P., andSinger, S. J. (1974): ‘Biological membranes as bilayer coples. A mechanism of drug-ertythrocyte interactions’,Proc. Natl. Acad. Sci.,71, pp. 4457–4461CrossRefGoogle Scholar
  18. Sheetz, M. P. (1983): ‘Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape’,Semin. Hematol.,20, pp. 175–188Google Scholar
  19. Sikorski, A., Bialkowska, K. (1996): ‘Interactions of spectrin with membrane intrinsic domain’,Cell. Mol. Biol. Lett.,1, pp. 97–104Google Scholar
  20. Stokke, B. T., Mikkelsen, A. andElgsaeter, A. (1986): ‘The human erythrocyte membrane skeleton may be an ionic gel II. Numerocal analyses of cell shapes and shape transformations’,Eur. Biophys. J.,13, pp. 219–233Google Scholar
  21. Svetina, S., andŽekš, B. (1996): ‘Elastic properties of closed bilayer membranes and the shapes of giant phospholipid vesicles’,in Lasic, D. D. andBarenholz, Y. (Eds.): ‘Handbook of non-medical applications of liposones’ (CRC Press, Boca Raton, Florida) pp. 13–42Google Scholar
  22. Waugh, R. E. andEvans, E. A. (1979): ‘Thermoelasticity of red blood cell membrane’,Biophys. J.,26, pp. 115–131Google Scholar
  23. Waugh, R. E., Song, J., Svetina, S., andŽekš, B. (1992): ‘Local and non-local curvature elasticity in bilayer membranes by tether formation from lecithin vesicles’,Biophys. J.,61, pp. 974–982Google Scholar
  24. Waugh, R. E. (1996): ‘Elastic energy of curvature-driven bump formation on red blood cell membrane’,Biophys. J.,70, pp. 1027–1035CrossRefGoogle Scholar
  25. Zarda, P. R., Chien, S. andSkalak, R. (1977): ‘Elastic deformations of red blood cells’,J. Biomech.,10, pp. 211–221CrossRefGoogle Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  1. 1.Laboratory of Applied PhysicsFaculty of Electrical EngineeringLjubljanaSlovenia
  2. 2.Institute of Biophysics, Medical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of BiologyÅbo Akademi UniversityÅbo/TurkuFinland

Personalised recommendations