Skip to main content
Log in

Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Images of the electrical current distribution in an intact piglet head, measured by MRI, are presented for the first time. Remarkable differences in the distribution of the electrical current between live and post mortem studies are found. After death, there is a decrease of 62% in the current reaching the brain, compared with the situation in the living animal. This reduction is associated with the increase in the brain impedance after death, which agrees with previous in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, D. C. andBrown, B. H. (1994): ‘Applied potential tomography’,J. Phys. E. Sci. Instrum.,17, pp. 723–733

    Article  Google Scholar 

  • Cui, W., Ostrander L. E. andOstrander L, B. Y. (1990): ‘In vivo reflectance of blood and tissue as a function of light wavelength’,IEEE Trans.,BME-37, (6), pp. 632–639

    Google Scholar 

  • Duck, F. A. (1990): ‘Physical properties of tissue—a comprehensive reference book’ (Academic Press Limited, London)

    Google Scholar 

  • Gamba, H. R. (1996): ‘Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging’, Ph.D. thesis, University of London, UK

    Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1967): ‘The specific resistance of biological material—a compendium of data for the bio-medical engineer and physiologist’,Med. & Biol. Eng.,5, pp. 271–293

    Article  Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1989): ‘Principles of applied biomedical instrumentation’ (Wiley, New York)

    Google Scholar 

  • Holder, D. S. (1992): ‘Electrical impedance tomography with cortical or scalp electrodes during global cerebral ischaemia in the anaesthetised rat’,Clin. Phys. Physiol. Meas.,13, (1), pp. 87–98

    Article  Google Scholar 

  • Holder, D. S. (1993): ‘Physiological constraints to imaging brain function with EIT and scalp electrodes’in Holder, D. S. (Ed.): ‘Clinical and physiological applications of electrical impedance tomography’, (UCL Press, UK) pp. 185–200

    Google Scholar 

  • Joy, M., Scott, G. andHenkelman, M. (1989): ‘In vivo detection of applied electric currents by magnetic resonance imaging’,Mag. Res. Imag.,7, pp. 89–94

    Article  Google Scholar 

  • Li, C.-L., Bak, A. F. andParker, L. O. (1968): ‘Specific resistivity of the cerebral cortex and white matter’,Experim. Neurol.,20, pp. 544–557

    Article  Google Scholar 

  • Linderkamp, O., Berg, D., Betke, K., Koferl, F., Kriegel, H. andRiegel, K. P. (1980): ‘Blood volume and hematocrit in various organs in newborn piglets’,Pediatr. Res.,14, pp. 1324–1327

    Google Scholar 

  • McArdle, F. J., Brown, B. H. andAngel, A. (1993): ‘Imaging cardiosynchronous impedance changes in the adult head’,in Holder, D. (Ed.): ‘Clinical and physiological applications of electrical impedance tomography’ pp. 177–183

  • Patel, M. andHu, X. (1993): ‘Direct calculation of wrap- free phase image’,Proc. Soc. Mag. Res. Med.,2, p. 721

    Google Scholar 

  • Sakai, F., Nakazawa, K., Tazaki, Y., Katsumi, I., Hino, H., Igarashi, H. andKanda, T. (1985): ‘Regional cerebral blood volume and haematocrit measurement in normal human volunteers by single emission computed tomography’,J. Cereb. Blood Flow & Metab,5, pp. 207–213

    Google Scholar 

  • Scott, G. C., Joy, M. L. G., Armstrong, R. L. andHenkelman, R. M. (1991): ‘Measurement of nonuniform current density by magnetic resonance’,IEEE Trans.,MI-10, (3), pp. 362–374

    Google Scholar 

  • Scott, G. C., Joy, M. L. G., Armstrong, R. L. andHenkelman, R. M. (1992): ‘Sensitivity of magnetic-resonance current-density imaging’,J. Mag. Res.,97, pp. 235–254

    Google Scholar 

  • Thompson, J. D. M., Joy, M. L. G. andHenkelman, R. M. (1991): ‘Current density imaging in rabbit head and chest’,Proc. Soc. Mag. Res. Med., p. 1274

  • van Harreveld, A. andOchs, S. (1956): ‘Cerebral impedance changes after circulatory arrest’,Am. J. Physiol.,187, pp. 180–192

    Google Scholar 

  • Webster, J. G. (1990): ‘Electrical impedence tomography’, Adam Hilger, UK

    Google Scholar 

  • Williams, L. R. andLeggett, R. W. (1989): ‘Reference values for resting blood flow to organs of man’,Clin. Physiol. Meas.,10, (3), pp. 187–217

    Article  Google Scholar 

  • Yip, G., Joy, M. L. G., Scott, G. C. andHenkelman, R. M. (1992): ‘In vivo current density imaging’,Proc. Soc. Mag. Res. Med., p. 3917

  • Zhao, S., Dodd, N. J. F., Kaczynski, J., Hawnaur, J. M. andIsherwood, I. (1993): ‘In vivo MR imaging of electrical current density distribution in mouse tumour’,Proc. Soc. Mag. Res. Med., p. 1368

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Gamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamba, H.R., Delpy, D.T. Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging. Med. Biol. Eng. Comput. 36, 165–170 (1998). https://doi.org/10.1007/BF02510738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510738

Keywords

Navigation