Skip to main content
Log in

Inversion of exponentialk-plane transforms

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Approximate and explicit inversion formulas are obtained for a new class of exponential k-plane transforms defined by\((\mathcal{P}_\mu f)(x,\Theta ) = \smallint _{\mathbb{R}^k } f(x + \Theta \xi )e^{\mu \cdot \xi } d\xi \) where x∈ℝn, Θ is a k-frame in ℝn, 1≤k≤n−1, μ∈ℂk is an arbitrary complex vector. The case k=1, μ∈ℝ corresponds to the exponential X-ray transform arising in single photon emission tomography. Similar inversion formulas are established for the accompanying transform\((P_\mu f)(x,V) = \smallint _{\mathbb{R}^k } f(x + V\xi )e^{\mu \cdot \xi } d\xi \) where V is a real (n×k)-matrix. Two alternative methods, leading to the relevant continuous wavelet transforms, are presented. The first one is based on the use of the generalized Calderón reproducing formula and multidimensional fractional integrals with a Bessel function in the kernel. The second method employs interrelation between Pμ and the associated oscillatory potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellini, S., Piacentini, M., and Cafforio, C. (1979). Compensation of tissue absorption in emission tomography,IEEE Trans. Acoustics, Speech and Signal Processing,ASSP-27, 213–218.

    Article  MathSciNet  Google Scholar 

  2. Bouwkamp, C.J. (1976). On some Bessel-function integral equations,Annali di Materm. Pura ed Appl.,108, 63–67.

    Article  MATH  MathSciNet  Google Scholar 

  3. Brahme, A., Roos, J-E, and Lax, I. (1982). Solution of an integral equation encountered in rotation therapy,Phys. Med. Biol.,27, 1221–1229.

    Article  Google Scholar 

  4. Budinger, T., Gullberg, G.T., and Huesman, R.H. (1979). Emission computed tomography, inImage Reconstruction from Projections. Implementation and Applications, Herman, G.T., Ed., Topics in Applied Physics,32, 147–246. Springer-Verlag, New York.

    Google Scholar 

  5. Clough, A.V. and Barrett, H.H. (1983). Attenuated Radon and Abel transforms,J. Opt. Soc. Am.,73, 1590–1595.

    Article  MathSciNet  Google Scholar 

  6. Cormack, A.M. and Quinto, E.T. (1990). The Mathematics and Physics of Radiation Dose Planning using X-rays,Contemporary Math.,113, 41–55.

    MathSciNet  Google Scholar 

  7. Ehrenpreis, L., Kuchment, P., and Panchenko, A. The exponential X-ray transform and Fritz John’s equation, I. Range description,Contemporary Math., to appear.

  8. Erdélyi, A., Ed. (1953).Higher Transcendental Functions, Vol. I, II, McGraw-Hill, New York.

    Google Scholar 

  9. Finch, D. V. and Hertle, A. (1987). The exponential Radon transform,Contemporary Math.,63, 67–73.

    MATH  MathSciNet  Google Scholar 

  10. Frazier, M., Jawerth, B., and Weiss, G. (1991). Littlewood-Paley theory and the study of function spaces,CBMS-Conf. Lect. Notes,79,Am. Math. Soc., Providence, RI.

    MATH  Google Scholar 

  11. Grandshteyn, I.S. and Ryzhik, I.M. (1980).Table of Integrals, Series, and Products, Academic Press, New York.

    Google Scholar 

  12. Hazou, I. and Solmon, D. (1986). Approximate inversion formulas and convolution kernels for the exponentialx-ray transform,Z. Angew. Math. Mech.,66, 370–372.

    MATH  Google Scholar 

  13. Hazou, I. and Solmon, D. (1988). Inversion of the exponential X-ray transform. I: Analysis,Math. Methods in Appl. Sci.,10, 561–574.

    Article  MATH  MathSciNet  Google Scholar 

  14. Hazou, I. and Solmon, D. (1990). Inversion of the exponential X-ray transform. II: Numerics,Math. Methods in Appl. Sci.,13, 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hazou, I. and Solmon, D. (1989). Filtered-backprojection and the exponential Radon transform,J. Math. Anal. Appl.,141, 109–119.

    Article  MATH  MathSciNet  Google Scholar 

  16. Heike, U. (1986). Single-photon emission computed tomography by inverting the attenuated Radon transform with least-squares collocation,Inverse Problems,2, 307–330.

    Article  MATH  MathSciNet  Google Scholar 

  17. Helgason, S. (1994). Geometric analysis on symmetric spaces,Am. Math. Soc., Providence, RI.

    MATH  Google Scholar 

  18. Hertle, A. (1984). On the injectivity of the attenuated Radon transform,Proc. Am. Math. Soc.,92, 201–205

    Article  MATH  MathSciNet  Google Scholar 

  19. Holschneider, M. (1991). Inverse Radon transforms through inverse wavelet transforms,Inverse Problems,7, 853–861.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kaiser, G.A. and Streater, R.F. (1992). Windowed Radon transforms, analytic signals, and wave equation, in:Wavelets—A Tutorial in Theory and Applications, Chui, C.K., Ed., Academic Press, New York, 399–441.

    Google Scholar 

  21. Keinert, F. (1989). Inversion ofk-plane transforms and applications in computer tomography,SIAM Rev.,31, 273–289.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kuchment, P. (1994). On inversion and range characterization of one transform arising in emission tomography, in:75 Years of the Radon Transform, Internat. Press, 240–248.

  23. Kuchment, P. and Shneiberg, I. (1994). Some inversion formulas in the single photon emission coomputed tomographyAppl. Anal.,53, 221–231.

    MATH  MathSciNet  Google Scholar 

  24. Lowndes, J.S. (1970). A generalization of the Erdélyi-Kober operators,Proc. Edinburgh Math. Soc.,17, 139–148.

    Article  MATH  MathSciNet  Google Scholar 

  25. McBride, A.C. and Rubin, B. (1997). Continuity and inverstibility of distributional multidimensional fractional integrals,Integrarl Transforms and Special Functions,5, 103–116.

    MATH  MathSciNet  Google Scholar 

  26. Markoe, A. (1984). Fourier inversion of the attenuated X-ray transform,SIAM J. Math. Anal.,15, 718–722.

    Article  MATH  MathSciNet  Google Scholar 

  27. Markoe, A. and Quinto, E.T. (1985). An elementary proof of local invertability for generalized and attenuated Radon transforms,SIAM J. Math. Anal.,16, 1114–1119.

    Article  MATH  MathSciNet  Google Scholar 

  28. Natterer, F. (1979). On the inversion of the attenuated Radon transform,Numer. Math.,32, 431–438.

    Article  MATH  MathSciNet  Google Scholar 

  29. Natterer, F. (1983). Computerized tomography with unknown sources,SIAM J. Appl. Math.,43, 1201–1212.

    Article  MATH  MathSciNet  Google Scholar 

  30. Natterer, F. (1986).The Mathematics of Computerized Tomography, John Wiley & Sons, New York.

    MATH  Google Scholar 

  31. Palamodov, V. (1996). An inversion method for an attenuated X-ray transform,Inverse Problems 12, 717–729

    Article  MATH  MathSciNet  Google Scholar 

  32. Prudnikov, A.P., Brychkov, Y.A., and Marichev, O.I. (1986).Integrals and Series: Special Functions, Gordon and Breach Sci. Publ., New York.

    MATH  Google Scholar 

  33. Quinto, E.T. (1983). The inversibility of rotation invariant Radon transforms,J. Math. Anal. Appl.,91. 510–522,Erratum,94, 602–603.

    Article  MATH  MathSciNet  Google Scholar 

  34. Rubin, B. (1998). The Calderón reproducing formula, windowedX-ray transforms and Radon transforms inL p-spacesJ. Fourier Anal. Appl.,4, 175–197.

    Article  MATH  MathSciNet  Google Scholar 

  35. Rubin, B. (1998). Inversion ofk-plane transforms via continuous wavelet transforms,J. Math. Anal. Appl.,220, 187–203.

    Article  MATH  MathSciNet  Google Scholar 

  36. Rubin, B. (1996).Fractional Integrals and Potentials. Addison-Wesley, Longman.

  37. Rubin, B. (1984). One-sided potentials in the n-dimensional ball and in its exterior,VINITI (USSR), No. 5150-84, 1–48.

    Google Scholar 

  38. Rubin, B. (1994). Fractional integrals and weakly singular integral equations of the first kind in the n-dimensional ball,J. D’Anal. Math.,63, 55–102.

    MATH  Google Scholar 

  39. Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993).Fractional Integrals and Derivatives. Theory and Applications Gordon and Breach Sci. Publ., New York.

    MATH  Google Scholar 

  40. Santaló, L.A. (1976).Integral Geometry and Geometric Probability, Addison-Wesley, London.

    MATH  Google Scholar 

  41. Shneiberg, I.Ya. (1994). Exponential Radon transform,Am. Math. Soc. Transl.,162, 235–245.

    MATH  MathSciNet  Google Scholar 

  42. Stein, E.M. (1993).Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillation Integrals. Princeton University Press, Princeton, NJ.

    Google Scholar 

  43. Stein, E.M. and Weiss, G. (1971).Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  44. Tretiak, O.J. (1983). Attenuated and exponential Radon transforms, in:Computed Tomography, Proc. Symposia Appl. Math.,27, 25–33.

  45. Tretiak, O.J. and Metz, C. (1980). The exponential Radon transform,SIAM J. Appl. Math.,39, 341–354

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Eric Todd Quinto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, B. Inversion of exponentialk-plane transforms. The Journal of Fourier Analysis and Applications 6, 185–205 (2000). https://doi.org/10.1007/BF02510660

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510660

Math Subject Classifications

Keywords and Pharases

Navigation