Skip to main content
Log in

Rapid measurement of somatosensory evoked potential response to cerebral artery occlusion

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The aim of the paper is to determine the speed of the neurological response to cerebral artery occlusion by monitoring transient changes in somatosensory evoked potentials (SEPs). SEPs, continuously monitored during temporary clipping of the middle cerebral artery (MCA) in anaesthetised cats, are analysed. The SEP signals are modelled by a quasi-periodic Fourier series, the coefficients of which are estimated with the aid of two adaptive least squares estimation algorithms. The energy levels at various harmonics throughout the protocol are obtained directly from the filter weights. Noise covariance is estimated from pre-stimulus recording, and the adaptation rate of the algorithm is adjusted sweep-by-sweep to accomodate transient changes in the pre-stimulus noise level. After the occlusion, a significant decrease (p<0·05) in SEP amplitude is observed. The change in latency is not statistically significant (p≅0·5). The spectral trends show a sudden decline in energy at all harmonics immediately following occlusion, although when the amplifier bandwidth is changed to 5–1500 Hz (from an initial setting of 30–1500 Hz), the fundamental frequency component of the SEP signal shows the greatest responsiveness to injury. The average time constant of the decline in amplitude resulting from MCA occlusion is only 10·6±4·0 s. It is concluded that rapid detection of cerebral artery occlusion and ischaemia may be feasible by continuously monitoring SEP signals and analysing transient changes in time and frequency domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkiraju, P., andReddy, D. C. (1992): ‘Adaptive cancellation technique in processing myoelectric activity of respiratory muscles,’IEEE Trans.,BMD-39, pp. 652–655

    Google Scholar 

  • Aunon, J. I., McGillem, G. D., andChilders, D. G. (1981): ‘Signal processing in evoked potential research: averaging, principal components, modeling,’Crit. Rev. Biomed, Eng.,5, pp. 323–367

    Google Scholar 

  • Banakman, I. N., andThakor, N. V. (1990): ‘Noise reduction in biologic step signals: application to saccadic EOG,”Med. Biol. Eng. Comput.,28, pp. 544–549

    Article  Google Scholar 

  • Chen, J., Vandewalle, J., Sansen, W., Vantrappen, G., andJanssens, J. (1989): ‘Adaptive method for cancellation of respiratory artifact in electrogastric measurements,ibid.,27, pp. 57–63

    Article  Google Scholar 

  • Davila, CA., Abaye, A., andKhtnzad, A. (1994): ‘Estimation of single sweep steady-state visual evoked potentials by adaptive line enhancement,’IEEE Trans.,BME-41, pp. 197–200

    Google Scholar 

  • Ferrara, E. R., andWidrow, B. (1982): ‘Fetal electrocardiogram enhancement by time-sequenced adaptive filtering,’IEEE Trans.,BME-29, pp. 458–459

    Google Scholar 

  • Gotoh, O., Asano, T., Koide, T., andTakakura, K. (1985): ‘Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I. The time course of the brain water, sodium, and potassium contents and blood-brain barrier permeability to125I-albumin,’Stroke,16, pp. 101–109

    Google Scholar 

  • Grundy, B. L., Heros, R. C., Tung, A. S., andDoyle, E. (1981): ‘Intraoperative hypoxia detected by evoked potential monitoring,’Anesth. Anala.,60, pp. 437–439

    Google Scholar 

  • Haykin, S. (1986): ‘Adaptive filter theory’ (Prentice Hall: Englewood Cliffs, New Jersey)

    MATH  Google Scholar 

  • Hoke, M., Ross, B., Wickesberg, R., andLuftkenhoener, R. (1984): ‘Weighted averaging—theory and application to electrical response audiometry,’Electroenceph. Clin. Neurophys.,57, pp. 484–489

    Article  Google Scholar 

  • Laguna, P., Jane, R., Meste, O., Poon, P., Caminal, P., Rix, H., andThakor, N. V. (1992): ‘Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques,’IEEE Trans.,BME-39, pp. 1032–1044

    Google Scholar 

  • McPherson, R. W., Niedermeyer, E. F., Otenasek, R. J., andHanley, D. F. (1983): ‘Correlation of transient neurological deficit and somatosensory evoked potentials after intracranial aneurysm surgery,’J. Neurosurg.,59, pp. 146–149

    Article  Google Scholar 

  • McPherson, R. W., Mahla, M., Szymanski, J., andRogers, M. C. (1984): ‘Somatosensory evoked potential changes in position-related brain stem ischemia,’Anesthesiol.,61, pp. 88–90

    Article  Google Scholar 

  • Madhavan, P. G., De Bruin, H., andUpton, A. R. M. (1984): ‘Evoked potential processing and pattern recognition.’ Proc. 6th Ann. Conf. of IEEE Engineering in Medicine Biology Society, pp. 29.10–29.10.4

  • Madhavan, P. G. (1992): ‘Minimal repetition evoked potentials by modified line enhancement,’IEEE Trans.,BME-39, pp. 760–764

    Google Scholar 

  • Moller, A. R. (1988): ‘Evoked potentials in intraoperative monitoring,’ (Williams & Wilkins)

  • Norcia, A. M., Sato, T., Shinn, P., andMertus, I. (1986): ‘Methods for the identification of evoked response components in the frequency and combined time/frequency domains,’Electroenceph. Clin. Neurophys.,65, pp. 212–222

    Article  Google Scholar 

  • Nuwer, M. R. (1986): ‘Evoked potential monitoring in the operating room,’ (Raven Press, New York)

    Google Scholar 

  • O'Brien, M. D., andWaltz, A. G. (1973): ‘Transorbital approach for occluding the middle cerebral artery without craniotomy,’Stroke,4, pp. 201–206

    Google Scholar 

  • Sakatami, K., Iizuka, H., and Young, W. (1990): ‘Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion,ibid.,21, pp. 124–132.

    Google Scholar 

  • Thakor, N. V. (1987): ‘Adaptive filtering or evoked potentials,’IEEE Trans.,BME-34, pp. 6–12

    Google Scholar 

  • Thakor, N. V., andYi-Sheng, Z. (1991): ‘Some applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection,’ibid.,BME-38, pp. 785–794

    Google Scholar 

  • Thakor, N. V., Vaz, C. A. McPherson, R. W., andHanley, D. F. (1991): ‘Adaptive Fourier series modelling of time-varying evoked potentials: study of human somatosensory evoked response to etomidate anesthetic,’J. Electroenceph. Clin. Neurophys.,880, pp. 108–118

    Article  Google Scholar 

  • Thakor, N. V., Xin-Rong, G., Vaz, C. A., Laguna, P., Jane, R., Caminal, P., Rix, H., andHanley, D. F. (1993): ‘Orthonormal (Walsh and Fourier) models of evoked potentials in neurological injury,’IEEE Trans.,BME-40, pp. 213–221

    Google Scholar 

  • Thakor, N. V. (1994): ‘Adaptive filters for analysis of intra-cardiac signals,’Med. Biol. Eng. Comput.,32, (4), pp. S19-S24

    Google Scholar 

  • Vaz, C. A., andThakor, N. V. (1989): ‘Adaptive Fourier estimation of time-varying evoked potentials,’IEEE Trans.,BME-36, pp. 448–455

    Google Scholar 

  • Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Wong, E., andGoodlin, R. C. (1975): ‘Adaptive noise cancelling: principles and applications’,Proc. IEEE,63, pp. 1692–1716

    Article  Google Scholar 

  • Widrow, B., Baudrenghien, P., Vetterli, M., andTitchener, P. F. (1987); ‘Fundamental relations between the LMS algorithm and the DFT’,IEEE Trans.,CAS-34, pp. 814–819

    Google Scholar 

  • Widrow, B., andStearn, S. D. (1985): ‘Adaptive signal processing’ (Prentice Hall, Englewood Cliffs, New Jersey)

    MATH  Google Scholar 

  • Yelderman, M., Widrow, B., Cioffi, J. M., Hesler, E., andLeddy, J. A. (1983): ‘ECG enhancement by adaptive cancellation of electrosurgical interference,IEEE Trans.,BME-30, pp. 392–398

    Google Scholar 

  • Yi-Sheng, Z., Bin, Z., andThakor, N. V. (1994): ‘Variable convergence adaptive filter and its application to cardiac action potential’,Med. Biol. Eng. Comput.,32, (6), pp. 700–000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poon, P., Koehler, R.C. & Thakor, N.V. Rapid measurement of somatosensory evoked potential response to cerebral artery occlusion. Med. Biol. Eng. Comput. 33, 396–402 (1995). https://doi.org/10.1007/BF02510522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510522

Keywords

Navigation