Advertisement

Parametric phase-delay estimation of sound transmitted through intact human lung

  • S. Lu
  • P. C. Doerschuk
  • G. R. Wodicka
Physiological Measurement

Abstract

Sonic noise between 300 and 1600 Hz is introduced into the mouths of 11 healthy adult male subjects at resting lung volume and is detected over the anterior extrathoracic trachea and at three sites on the right posterior chest wall. To overcome the difficulties associated with non-parametric phase unwrapping due to thoracic anti-resonances, the pahse delay τ(f) of propagation between the trachea and the chest wall is estimated using a linear parametric ARX-type statistical model with the non-parametric magnitude spectra as a guide. The resulting τ(f) estimates are unambiguous and reliable, and show a clear trend of decreasing τ(f) with increasing frequency, indicating that sound at higher frequencies reaches the chest wall faster than that at lower frequencies. This finding indicates that respiratory sound transmission is highly dispersive, most probably owing to frequencydependent airway and parenchymal wavespeeds.

Key words

Acoustic transmission Lung sounds Parametric modelling Phase delay Respiratory sounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guelke, R. W., andBunn, A. E. (1981): ‘Transmission line theory applied to sound wave propagation in tubes with compliant walls,’Acoustica,48, pp. 101–106Google Scholar
  2. Kraman, S. S. (1983): ‘Speed of low-frequency sound through the lungs of normal men,’J. Appl. Physiol.,55, pp. 1862–1867Google Scholar
  3. Kraman, S. S., andAustrheim, O. (1983): ‘Comparison of lung sound and transmitted sound amplitude in normal men,’Am. Rev. Resp. Dis.,128, pp. 451–454Google Scholar
  4. Kraman, S. S., Bohadana, A. B. (1989): ‘Transmission to the chest of sound introduced at the mouth,’J. Appl. Physiol.,66, pp. 278–281CrossRefGoogle Scholar
  5. Laennec, R. T. H. (1819): ‘De l'ausculation mediate.’ (Brasson and Chande, Paris)Google Scholar
  6. Liung, L. (1987): ‘System identification: theory for the user’ (Prentice-Hall, Englewood Cliffs, New Jersey)Google Scholar
  7. Lu, S. (1992): ‘Propagation pathway and phase delay estimation of sound transmitted through intact human lung.’ MSc Thesis, School of Electrical Engineering, Purdue University, West Lafayette, Indiana, USAGoogle Scholar
  8. Rice, D. A. (1980): ‘Sound speed in upper airways,’J. Appl. Physiol.,49, pp. 326–336Google Scholar
  9. Rice, D. A. ‘Sound speed in pulmonary parenchyma,’ibid. J. Appl. Physiol.,54, pp. 304–308Google Scholar
  10. Rice, D. A. (1984): ‘Dispersion in pulmonary sound transmission.’ Proc. 37th ACEMB Conf., p. 75Google Scholar
  11. Suki, B., Habib, R. H., andJackson, A. C. (1993): ‘Wave propagation, input impedance and wall mechanics of the calf trachea from 16 to 1,600 Hz,’J. Appl. Physiol.,75(6), pp. 2755–2766Google Scholar
  12. Vermarien, H., andVan Vollenhoven, E. (1984): ‘The recording of heart vibrations: a problem of vibration measurement of soft tissue,’Med. Biol. Eng. Comput.,22, pp. 168–178CrossRefGoogle Scholar
  13. Wodicka, G. R., Aguirre, A., DeFrain, P. D., andShannon, D. C. (1992): ‘Phase delay of pulmonary acoustic transmission from trachea to chest wall,’IEEE Trans.,BME-39, pp. 1053–1059Google Scholar
  14. Wodicka, G. R., DeFrain, P. D., andKraman, S. S. (1994): ‘Bilateral asymmetry of respiratory acoustic transmission,’Med. Biol. Eng. Comput., 1994,32, (3), pp. 489–494Google Scholar
  15. Wodicka, G. R., andShannon, D. C. (1990): ‘Transfer function of sound transmission in subglottal human respiratory system at low frequencies,’J. Appl. Physiol.,69, pp. 2126–2130Google Scholar
  16. Wodicka, G. R., Stevens, K. N., Golub, H. L., Cravalho, E. G., andShannon, D. C. (1989): ‘A model of acoustic transmission in the respiratory system,’IEEE Trans.,BME-36, pp. 925–934Google Scholar
  17. Wodicka, G. R., Stevens, K. N., Golub, H. L., andShannon, D. C. (1990): ‘The spectral characteristics of sound transmission in the intact human respiratory system,’BME-37, pp. 1130–1135Google Scholar

Copyright information

© IFMBE 1995

Authors and Affiliations

  • S. Lu
    • 1
  • P. C. Doerschuk
    • 1
  • G. R. Wodicka
    • 1
  1. 1.School of Electrical Engineering and Hillenbrand Biomedical Engineering CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations