Skip to main content
Log in

Relative distribution of rDNA and proteins of the RNA polymerase I transcription machinery at chromosomal NORs

  • Research Articles
  • Sites of Transcription and Processing
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Using confocal and immunofluorescence microscopy the relative distribution of the ribosomal chromatin and some proteins of the RNA polymerase I transcription machinery such as upstream binding factor (UBF), RNA polymerase I and DNA topoisomerase I was analyzed on chromosomal nucleolus organize regions (NORs) of PtK1 cells. Staining with various DNA fluorochromes revealed that the ribosomal chromatin may be found at the axial region of the NOR and also at lateral expansions around the axis that can also be detected by in situ hybridization. It was observed that the transcription machinery shows a crescent-shaped distribution around the axial ribosomal chromatin at the NOR of metaphase and anaphase chromatids. An ultrastructural analysis of serially sectioned NORs supports this crescent-shape organization. Taking into account previous and present results and the loop/scaffold model of chromosome structure, we propose a model of NOR organization. The model proposes that ribosomal genes that were inactive in the preceding interphase would be present as condensed short Q-loops occupying the axial region of the NOR. Ribosomal genes previously active during interphase would be undercondensed as large R-loops associated with the transcription machinery, which is distributed in a crescent-shaped fashion around the previously active ribosomal DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bickmore, W, Oghene K (1996) Visualizing the spatial relationships between defined DNA sequences and the axial region of extracted metaphase chromosomes. Cell 84:94–104

    Article  Google Scholar 

  • Boy de la Tour E, Laemmli UK (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55:937–944

    Article  PubMed  CAS  Google Scholar 

  • Chan EKL, Imai H, Hamel JC, Tan EM (1991) Human autoantibody to RNA polymerase I transcription factor hUBF. Molecular identity of nucleolus organizer region autoantigen NOR-90 and ribosomal RNA transcription upstream binding factor. J Exp Med 174:1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761

    Article  PubMed  CAS  Google Scholar 

  • Dammann R, Lucchini R, Koller T, Sogo JM (1995) Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol 15:5294–5303

    PubMed  CAS  Google Scholar 

  • Earnshaw W (1988) Mitotic chromosome structure. BioEssays 9:147–150

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw W, Heck MMS (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol, 100:1716–1725

    Article  PubMed  CAS  Google Scholar 

  • Gasser S, Laroche T, Falquet J, Boy de la Tour E, Laemmli U (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188:613–629

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Paweletz N (1990) The nucleolar chromatin and the secondary constriction. Cell Biol Int Rep 14:681–687

    Article  PubMed  CAS  Google Scholar 

  • Goessens G, Thiry M, Lepoint A (1987) Relations between nucleoli and nucleolus-organizing regions during the cell cycle. In: Stahl A, Luciani JM, Vagner-Copodano AM (eds) Chromosomes Today 9:261–271

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Article  PubMed  CAS  Google Scholar 

  • Guldner H-H, Szostecki C, Vosberg H-P, Lakomek H-J, Penner E, Bautz FA (1986) Scl 70 autoantibodies from scleroderma patients recognize a 95 kDa protein identified as DNA topoisomerase I. Chromosoma 94:132–138

    Article  PubMed  CAS  Google Scholar 

  • Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. In: Alfort M, Beermann W, Goldstein L, Porter KR, Sitte P (eds) Monographs CB Springer, Wien, New York, pp 1–268

    Google Scholar 

  • Hernandez-Verdun D, Derenzini M (1983) Non-nucleosomal configuration of chromatin in nucleolar organizer regions of metaphase chromosomes in situ. Eur J Cell Biol 31:360–365

    PubMed  CAS  Google Scholar 

  • Hsu TC, Brinkley BR, Arrighi FE (1967) The structure and behavior of the nucleolus organizers in mammalian cells. Chromosoma 23:137–153

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Mannervik M, Tora L, Carmofonseca M (1996) In vivo evidence that TATA-binding protein SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234

    Article  PubMed  CAS  Google Scholar 

  • Junéra HR, Masson C, Géraud G, Suja J, Hernandez-Verdun D (1997) Involvement of in situ conformation of ribosomal genes and selective distribution of UBF in rRNA transcription. Mol Biol Cell 8:145–156

    PubMed  Google Scholar 

  • Laemmli U, Cheng S, Adolph K, Paulson J, Brown J, Baumbach W (1977) Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harbor Symp Quant Biol 42:351–360

    Google Scholar 

  • Marilley M, Gassend-Bonnet G (1989) Supercoiled loop organization of genomic DNA: a close relationship between loop domains, expression units, and replicon organization in rDNA fromXenopus laevis. Exp Cell Res 180:475–489

    Article  PubMed  CAS  Google Scholar 

  • Paulson J (1988) Scaffolding and radial loops: the structural organization of metaphase chromosomes. In: Adolph KW (ed) Chromatin and chromosomes. CRC Press, Boca Raton, pp 3–36

    Google Scholar 

  • Ploton D, Beorchia A, Menager M, Jeannesson P, Adnet J-J (1987a) The three-dimensional ultrastructure of interphasic and metaphasic nucleolar argyrophilic components studied with high-voltage electron microscopy in thick sections. Biol Cell 59:113–120

    PubMed  CAS  Google Scholar 

  • Ploton D, Thiry M, Menager M, Lepoint A, Adnet JJ, Goessens G (1987b) Bchaviour of nucleolus during mitosis. A comparative ultrastructural study of various cancerous cell lines using the Ag-NOR staining procedure. Chromosoma 95:95–107

    Article  PubMed  CAS  Google Scholar 

  • Rattner J (1992) Integrating chromosome structure with function. Chromosoma 101:259–264

    Article  PubMed  CAS  Google Scholar 

  • Rattner J, Lin C (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296

    Article  PubMed  CAS  Google Scholar 

  • Razin S, Hancock R, Iarovaia O, Westergaard O, Gromova I, Georgiev G (1993) Structural-functional organization of chromosomal domains. Cold Spring Harbor Symp Quant Biol 58:25–35

    PubMed  CAS  Google Scholar 

  • Robert-Fortel I, Junéra HR, Géraud G, Hernandez-Verdun D (1993) Three-dimensional organization of the ribosomal genes and Ag-NOR proteins during interphase and mitosis in PtK1 cells studied by confocal microscopy. Chromosoma 102:146–157

    Article  PubMed  CAS  Google Scholar 

  • Roussel P, André C, Masson C, Géraud G, Hernandez-Verdun D (1993) Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci. 104:327–337

    PubMed  CAS  Google Scholar 

  • Roussel P, André C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246

    Article  PubMed  CAS  Google Scholar 

  • Saitoh Y, Laemmli UK (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76:609–622

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Goldberg I, Wood E, Earnshaw W (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127:303–318

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Rose KM (1984) Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher H, Mikelsaar A-V, Schnedl W (1978) The nature of the Ag-staining of nucleolus organizer regions. Cytogenet Cell Genet 20:24–39

    PubMed  CAS  Google Scholar 

  • Schweizer D, Mendelak M, White M, Contreras N (1983) Cytogenetics of the parthenogenetic grasshopperWarramaba virgo and its bisexual relatives. X. Patterns of fluorescent banding. Chromosoma 88:227–236

    Article  Google Scholar 

  • Shaw PJ, Highett MI, Beven AF, Jordan EG (1995) The nucleolar architecture of polymerase I transcription and processing. EMBO J 14:2896–2906

    PubMed  CAS  Google Scholar 

  • Sinclair J, Brown D (1971) Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. Biochemistry 10:2761–2769

    Article  PubMed  CAS  Google Scholar 

  • Suja J, Hernandez-Verdun D (1996) The Ag-NOR proteins present a crescent-shaped distribution at the secondary constriction of metaphase PtK1 chromosomes. Cytogenet Cell Genet 75:155–161

    Article  PubMed  CAS  Google Scholar 

  • Thiry M, Sheer U, Goessens G (1988) Immunoelectron microscopic study of nucleolar DNA during mitosis in Ehrlich tumor cells. Eur J Cell Biol 47:346–357

    PubMed  CAS  Google Scholar 

  • Weisenberger D, Scheer U (1995) A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J Cell Biol 129:561–575

    Article  PubMed  CAS  Google Scholar 

  • Yoon Y, Sanchez J, Brun C, Huberman J (1995) Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol Cell Biol 15:2482–2489

    PubMed  CAS  Google Scholar 

  • Zatsepina OV, Voit R, Grummt I, Spring H, Semenov MV, Trendelenburg MF (1993) The RNA polymerase I-specific transcription initiation factor UBF is associated with transcriptionally active and inactive ribosomal genes. Chromosoma 102:599–611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Suja.

Additional information

Edited by: S.A. Gerbi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suja, J.A., Gébrane-Younès, J., Géraud, G. et al. Relative distribution of rDNA and proteins of the RNA polymerase I transcription machinery at chromosomal NORs. Chromosoma 105, 459–469 (1997). https://doi.org/10.1007/BF02510483

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510483

Keywords

Navigation