Skip to main content
Log in

Small nucleolar RNAs and nucleolar proteins inXenopus anucleolate embryos

  • Research Articles
  • rDNA and Lack Thereof
  • Published:
Chromosoma Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We investigated the presence and localization, in the cells of anucleolate mutant embryos ofXenopus laevis, of three representative small nucleolar RNAs (snoRNAs), U3, U15 and U17, and of two nucleolar proteins, nucleolin and fibrillarin. The levels of the three snoRNAs in the anucleolate mutant are the same as in normal embryos, in contrast to 5S RNA and ribosomal proteins. In situ hybridization showed that, in the absence of fully organized nucleoli, the three RNAs are diffusely distributed in the nucleus and partly associated with a number of small structures. Nucleolin and fibrillarin are also present in the anucleolate embryos as in normal embryos, although there is less nucleolin mRNA in the former. The two nucleolar proteins were localized by immunofluorescence microscopy. Fibrillarin, similar to its associated U3 and U15 snoRNAs, is diffusely distributed in the anucleolate nucleus and is partly associated with small structures, probably prenucleolar bodies and pseudonucleoli. Nucleolin also appears diffusely distributed in the nucleus with some spots of higher concentration, but with a different pattern with respect to fibrillarin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakin AG, Smith L, Fournier MJ (1996) The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823–834

    Article  PubMed  CAS  Google Scholar 

  • Baserga SJ, Yang XW, Steitz JA (1991) An intact box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. EMBO J 10:2645–2651

    PubMed  CAS  Google Scholar 

  • Brown DD (1967) The genes for ribosomal RNA and their transcription during amphibian development. Curr Top Dev Biol 2:47–73

    Article  PubMed  CAS  Google Scholar 

  • Brown DD, Gurdon JB (1964) Absence of ribosomal RNA synthesis in the anucleolate mutant ofXenopus laevis. Proc Natl Acad Sci USA 51:139–146

    Article  PubMed  Google Scholar 

  • Brown DD, Weber CS (1968) Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4S RNA, 5S RNA, and ribosomal RNA. J Mol Biol 34:661–680

    Article  PubMed  CAS  Google Scholar 

  • Caizergues-Ferrer M, Mariottini P, Curie C, Lapeyre B, Gas N, Amalric F, Amaldi F (1989) Nucleolin fromXenopus laevis: cDNA cloning and expression during development. Genes Dev 3:324–333

    PubMed  CAS  Google Scholar 

  • Caizergues-Ferrer M, Mathieu C, Mariottini P, Amalric F, Amaldi F (1991) Developmental expression of fibrillarin and U3 snRNA inXenopus laevis. Development 112:317–326

    PubMed  CAS  Google Scholar 

  • Cecconi F, Mariottini P, Loreni F, Pierandrei-Amaldi P, Campioni N, Amaldi F (1994) U17XS8, a small nucleolar RNA with a 12 nt complementarity to 18S rRNA and coded by a sequence repeated in the six introns ofXenopus laevis r-protein S8 gene. Nucleic Acids Res 22:732–741

    PubMed  CAS  Google Scholar 

  • De La Torre C, Gimenez-Martin G (1982) The nucleolus cycle. In: Jordan EG, Cullis CA (eds) The nucleolus. Cambridge University Press, Cambridge, UK, pp 153–177

    Google Scholar 

  • Elsdale TR, Fischberg M, Smith S (1958) A mutation that reduces nucleolar number inXenopus laevis. Exp Cell Res 14:642–643

    Article  PubMed  CAS  Google Scholar 

  • Esper H, Barr HJ (1964) A study of the developmental cytology of a mutation affecting nucleoli inXenopus embryos. Dev Biol 10:105–121

    Article  PubMed  CAS  Google Scholar 

  • Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer, Berlin

    Google Scholar 

  • Hay ED, Gurdon JB (1967) Fine structure of the nucleolus in normal and mutantXenopus embryos. J Cell Sci 2:151–162

    PubMed  CAS  Google Scholar 

  • Hughes JMX, Ares M (1991) Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J 10:4231–4239

    PubMed  CAS  Google Scholar 

  • Jeppesen C, Stebbins-Boaz B, Gerbi SA (1988) Nucleotide sequence determination and secondary structure ofXenopus U3 snRNA. Nucleic Acids Res 16:2127–2148

    PubMed  CAS  Google Scholar 

  • Kass F, Tyc K, Steitz JA, Sollner-Webb B (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal processing. Cell 60:897–908

    Article  PubMed  CAS  Google Scholar 

  • Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088

    Article  PubMed  Google Scholar 

  • Lapeyre B, Mariottini P, Mathieu C, Ferrer P, Amaldi F, Amalric F, Caizergues-Ferrer M (1990) Molecular cloning ofXenopus fibrillarin, a conserved U3 small nuclear ribonucleoprotein recognized by antisera from humans with autoimmune disease. Mol Cell Biol 10:430–434

    PubMed  CAS  Google Scholar 

  • Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 35:897–934

    Article  Google Scholar 

  • Messmer B, Dreyer C (1993) Requirements for nuclear translocation and nucleolar accumulation of nucleolin ofXenopus laevis. Eur J Cell Biol 61:369–382

    PubMed  CAS  Google Scholar 

  • Miller L (1973) Control of 5S RNA synthesis during early development of anucleolate and partial nucleolate mutants ofXenopus laevis. J Cell Biol 59:624–532

    Article  CAS  Google Scholar 

  • Miller L (1974) Metabolism of 5S RNA in the absence of ribosome production. Cell 3:275–281

    Article  PubMed  CAS  Google Scholar 

  • Nicoloso M, Qu LH, Michot B, Bachellerie JP (1996) Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J Mol Biol 260:178–195

    Article  PubMed  CAS  Google Scholar 

  • Ochs RL, Lischwe MA, Shen E, Carroll RE, Busch H (1985) Nucleologenesis: composition and fate of prenucleolar bodies. Chromosoma 92:330–336

    Article  PubMed  CAS  Google Scholar 

  • Olson MO (1990) The role of proteins in nucleolar structure and function. In: Strauss PR, Wilson SH (eds) The eukaryotic nucleus. Telford Press, Caldwell, NJ, pp 519–577

    Google Scholar 

  • Pellizzoni L, Crosio C, Campioni N, Loreni F, Pierandrei-Amaldi P (1994) Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene ofXenopus laevis. Nucleic Acids Res 22:4607–4613

    PubMed  CAS  Google Scholar 

  • Pellizzoni L, Cardinali B, Lin-Marq N, Mercanti D, Pierandrei-Amaldi P (1996) AXenopus laevis homologue of the La autoantigen binds the pyrimidine tract of the 5'UTR of ribosomal protein mRNAs in vitro: implication of a protein factor in complex formation. J Mol Biol 259:904–915

    Article  PubMed  CAS  Google Scholar 

  • Pieler T, Appel B, Oei SL, Mentrel H, Erdmann A (1985) Point mutational analysis of theXenopus laevis 5S gene promoter. EMBO J 4:1847–1853

    PubMed  CAS  Google Scholar 

  • Pierandrei-Amaldi P, Amaldi F (1994) Aspects of regulation of ribosomal protein synthesis inXenopus laevis. Review. Genetica 94:181–193

    Article  CAS  Google Scholar 

  • Pierandrei-Amaldi P, Campioni N, Beccari E, Bozzoni I (1982) Expression of ribosomal protein genes inXenopus laevis development. Cell 30:163–171

    Article  PubMed  CAS  Google Scholar 

  • Pierandrei-Amaldi P, Beccari E, Bozzoni I, Amaldi F (1985) Ribosomal protein production in normal and anucleolateXenopus embryos: regulation at the posttranscriptional and translational levels. Cell 42:317–323

    Article  PubMed  CAS  Google Scholar 

  • Probst EA, Kressman A, Birnstiel ML (1979) Expression of sea urchin histone genes in the oocyte ofXenopus laevis. J Mol Biol 135:709–732

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Savino R, Gerbi SA (1990) In vivo disruption ofXenopus U3 snRNA affects ribosomal RNA processing. EMBO J 9:2299–2308

    PubMed  CAS  Google Scholar 

  • Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. BioEssays 12:14–21

    Article  PubMed  CAS  Google Scholar 

  • Steele RE, Thomas PS, Reeder RH (1984) Anucleolate frog embryos contain ribosomal DNA sequences and a nucleolar antigen. Dev Biol 102:409–416

    Article  PubMed  CAS  Google Scholar 

  • Tashiro K, Shiokawa K, Yamana K, Sakaki Y (1986) Structural analysis of ribosomal DNA homologues in nucleolus-less mutant ofXenopus laevis. Gene 44:299–306

    Article  PubMed  CAS  Google Scholar 

  • Wallace H, Birnstiel ML (1966) Ribosomal cistrons and the nucleolar organizer. Biochim Biophys Acta 114:296–310

    PubMed  CAS  Google Scholar 

  • Wilkinson DG (1992) The theory and practice of in situ hybridization. In: Wilkinson DG (ed) In situ hybridization: a practical approach. IRL Press, Oxford, pp 1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Pierandrei-Amaldi.

Additional information

Edited by: S.A. Gerbi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosio, C., Campioni, N., cardinali, B. et al. Small nucleolar RNAs and nucleolar proteins inXenopus anucleolate embryos. Chromosoma 105, 452–458 (1997). https://doi.org/10.1007/BF02510482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510482

Keywords

Navigation