Advertisement

BIT Numerical Mathematics

, Volume 37, Issue 4, pp 978–987 | Cite as

Multi-parameter error resolution for the collocation method of Volterra integral equations

  • Aihui Zhou
Article

Abstract

In this paper, a multi-parameter error resolution technique is introduced and applied to the collocation method for Volterra integral equations. By using this technique, an approximation of higher accuracy is obtained by using a multi-processor in parallel. Additionally, a correction scheme for approximation of higher accuracy and a global superconvergence result are presented.

AMS subject classification

65R20 

Key words

Collocation integral equations multi-parameter error resolution parallel algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. E. Atkinson,A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, Society for Industrial and Applied Mathematics, Philadelphia, 1976.MATHGoogle Scholar
  2. 2.
    H. Brunner,Iterated collocation methods and their discretizations for Volterra integral equations, SIAM J. Numer. Anal., 21 (1984), pp. 1132–1145.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H. Brunner,Collocation methods for one-dimensional Fredholm and Volterra integral equations, in The State of the Art in Numerical Analysis, A. Iserles and M. J. D. Powell, eds., Oxford University Press, Oxford, 1987, pp. 563–600.Google Scholar
  4. 4.
    H. Brunner,Open problems in the discretization of Volterra integral equations, Lecture Notes, Memorial University of Newfoundland, 1993.Google Scholar
  5. 5.
    H. Brunner and P. J. van der Houwen,The Numerical Solution of Volterra Equations, CWI Monograph 3, North-Holland, Amsterdam, 1986.MATHGoogle Scholar
  6. 6.
    F. Chatelin and R. Lebbar,The iterated projection solution for the Fredholm integral equation of second kind, J. Austral. Math. Soc. Ser. B, 22 (1981), pp. 439–451.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    I. G. Graham, S. Joe, and I. H. Sloan,Iterated Galerkin versus iterated-collocation for integral equations of the second kind, IMA J. Numer. Anal., 5 (1985), pp. 355–369.MathSciNetMATHGoogle Scholar
  8. 8.
    S. Joe,Collocation methods using piecewise polynomials for second kind integral equations, J. Comput. Appl. Math., 12/13 (1985), pp. 391–400.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Q. Lin and J. Shi,Iterative corrections and a posteriori error estimate for integral equations, J. Comput. Math., 11 (1993), pp. 297–300.MathSciNetMATHGoogle Scholar
  10. 10.
    Q. Lin, I. H. Sloan, and R. Xie,Extrapolation of the iterated-collocation method for integral equations of the second kind, SIAM J. Numer. Anal., 27 (1990), pp. 1535–1541.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Q. Lin and A. Zhou,Defect correction for finite element gradient, Systems Sci. Math. Sci., 5 (1992), 287–288.MathSciNetMATHGoogle Scholar
  12. 12.
    W. McLean,Asymptotic error expansions for numerical solutions of integral equations, IMA J. Numer. Anal., 9 (1989), pp. 373–384.MathSciNetMATHGoogle Scholar
  13. 13.
    I. H. Sloan,Superconvergence, in: Numerical Solution of Integral Equations, M. A. Golberg, ed., Plenum Press, New York, 1990, pp. 35–70.Google Scholar
  14. 14.
    A. Zhou,Extrapolation for collocation method of the first kind Volterra integral equations, Acta Math. Sci., 11 (1991), pp. 471–476.MATHGoogle Scholar
  15. 15.
    A. Zhou, C. B. Liem, and T. M. Shih,A parallel algorithm based on multi-parameter asymptotic error expansion, in Proc. of Conference on Scientific Computation, Hong Kong, March 17–19, 1994.Google Scholar
  16. 16.
    A. Zhou, C. B. Liem, T. M. Shih, and T. Lü,A multi-parameter splitting extrapolation and a parallel algorithm, Research Report IMS-61, Institute of Mathematical Sciences, Academia Sinica, Chengdu, China, 1994, see also Systems Sci. Math. Sci., 10:3 (1997), pp. 253–260.Google Scholar

Copyright information

© Swets & Zeitlinger 1997

Authors and Affiliations

  • Aihui Zhou
    • 1
  1. 1.Institute of Systems ScienceAcademia SinicaBeijingP. R. China

Personalised recommendations