BIT Numerical Mathematics

, Volume 37, Issue 3, pp 623–643 | Cite as

Multigrid methods for the computation of singular solutions and stress intensity factors II: Crack singularities

  • S. C. Brenner
  • L. -Y. Sung


We consider the Poisson equation −Δu=f with homogeneous Dirichlet boundary condition on a two-dimensional polygonal domain Ω with cracks. Multigrid methods for the computation of singular solutions and stress intensity factors using piecewise linear functions are analyzed. The convergence rate for the stress intensity factors is\(\mathcal{O}(h^{(3/2) - \in } )\) whenfεL 2(Ω) and\(\mathcal{O}(h^{(2 - \in )} )\) whenfεH 1(Ω). The convergence rate in the energy norm is\(\mathcal{O}(h^{(1 - \in )} )\) in the first case and\(\mathcal{O}(h)\) in the second case. The costs of these multigrid methods are proportional to the number of elements in the triangulation. The general case wherefεH m (Ω) is also discussed.

AMS subject classification

65N55 65N30 

Key words

Multigrid crack singularities stress intensity factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Babuška,Finite element method for domains with corners, Computing, 6 (1970), pp. 264–273.CrossRefGoogle Scholar
  2. 2.
    I. Babuška, R. B. Kellogg, and J. Pitkäranta,Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math., 33 (1979), pp. 447–471.MathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Babuška and A. Miller,The post-processing approach in the finite element method—part 2: The calculation of stress intensity factors, Int. J. Numer. Methods Engrg., 20 (1984), pp. 1111–1129.CrossRefGoogle Scholar
  4. 4.
    R. E. Bank and C. C. Douglas,Sharp estimates for multigrid rates of convergence with general smoothing and acceleration, SIAM J. Numer. Anal., 22 (1985), pp.617–633.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. E. Bank and T. F. Dupont,An optimal order process for solving finite element equations, Math. Comp., 36, (1981), pp. 35–51.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Š. Birman and G. E. Skovorcov,On the square integrability of the highest derivatives of the solution of the Dirichlet problem on domains with piecewise smooth boundaries (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat., Vol?? (1962), pp. 12–21.Google Scholar
  7. 7.
    H. Blum and M. Dobrowolski,On finite element methods for elliptic equations on domains with corners, Computing, 28 (1982), pp. 53–63.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Bourlard, M. Dauge, M.-S. Lubuma, and S. Nicaise,Coefficients of the singularities for elliptic boundary value problems on domains with conical points III. Finite element methods on polygonal domains, SIAM Numer. Anal., 29 (1992), pp. 136–155.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. H. Bramble,Multigrid Methods, Longman Scientific & Technical, Essex, 1993.MATHGoogle Scholar
  10. 10.
    J. H. Bramble and J. E. Pasciak,The analysis of smoothers for multigrid algorithms, Math. Comp., 58 (1992), pp. 467–488.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. H. Bramble and J. E. Pasciak,Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity, in Domain Decomposition Methods in Science and Engineering (Como, 1992), A. Quateroni, et al, ed., Contemp. Math. 157, Amer. Math. Soc., 1994, pp. 17–26.Google Scholar
  12. 12.
    S. C. Brenner,Multigrid methods for the computation of singular solutions and stress intensity factors I: Corner singularities, preprint (1996).Google Scholar
  13. 13.
    S. C. Brenner,Overcoming corner singularities by multigrid methods, preprint (1996).Google Scholar
  14. 14.
    S. C. Brenner and L. R. Scott,The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York-Berlin-Heidelberg, 1994.MATHGoogle Scholar
  15. 15.
    C.-M. Chen,Optimal points of the stresses for triangular linear element, Numer. Math. J. Chinese Univ., 2 (1980), pp. 12–20 (in Chinese)MATHMathSciNetGoogle Scholar
  16. 16.
    P.-G. Ciarlet,The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, New York, Oxford, 1978.MATHGoogle Scholar
  17. 17.
    M. Dauge,Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341, Springer-Verlag, Berlin-Heidelberg, 1988.MATHGoogle Scholar
  18. 18.
    M. Dauge, M.-S. Lubuma, and S. Nicaise,Coefficient des singularitiés pour le problème de Dirichlet sur un polygone, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987), pp. 483–486.MATHMathSciNetGoogle Scholar
  19. 19.
    M. Dauge, S. Nicaise, M. Bourlard, and M.-S. Lubuma,Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques I: résultats généraux pour le problème de Dirichlet, M2AN, 24 (1990), pp. 27–52.MATHMathSciNetGoogle Scholar
  20. 20.
    M. Dauge, S. Nicaise, M. Bourlard, and M.-S. Lubuma,Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques II: quelques opérateurs particuliers, M2AN, 24 (1990), pp. 343–367.MATHMathSciNetGoogle Scholar
  21. 21.
    M. Dobrowolski,Numerical Approximation of Elliptic Interface and Corner Problems, Habilitationschrift, Bonn, 1981.Google Scholar
  22. 22.
    P. Grisvard,Elliptic Problems in Non Smooth Domains, Pitman, Boston, 1985.Google Scholar
  23. 23.
    V. Kondratiev,Boundary value problems for elliptic equations in domains with conical or angular points, Tran. Moscow Math. Soc., 16 (1967), pp. 227–313.Google Scholar
  24. 24.
    S. G. Krein, Ju. I. Petunin, and E. M. Semenov,Interpolation of Linear Operators, American Mathematical Society, Translation of Mathematical Monographs, 54, Providence, 1982.Google Scholar
  25. 25.
    N. Levine,Superconvergent recovery of the gradient from piecewise linear finite-element approximations, IMA J. Numer. Anal., 5 (1985), pp. 407–427.MATHMathSciNetGoogle Scholar
  26. 26.
    J. Mandel, S. McCormick, and R. Bank,Variational multigrid theory, in Multigrid Methods, Frontiers in Applied Mathematics, 5, S. McCormick ed., SIAM, Philadelphia, 1987, pp. 131–177.Google Scholar
  27. 27.
    S. A. Nazarov and B. A. Plamenevsky,Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter, Expositions in Mathematics, 13, Berlin, New York, 1994.Google Scholar
  28. 28.
    H. Triebel,Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.Google Scholar

Copyright information

© BIT Foundation 1997

Authors and Affiliations

  • S. C. Brenner
    • 1
  • L. -Y. Sung
    • 1
  1. 1.Department of MathematicsUniversity of South CarolinaColumbia

Personalised recommendations