Advertisement

BIT Numerical Mathematics

, Volume 37, Issue 3, pp 559–590 | Cite as

Two improved algorithms for envelope and wavefront reduction

  • Gary Kumfert
  • Alex Pothen
Article

Abstract

Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and Scott; we describe enhancements to the Sloan algorithm that improve its quality and reduce its run time. Our test problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the weights in the Sloan algorithm. We describe an efficientO(nlogn+m) time implementation of the Sloan algorithm, wheren is the number of rows (vertices), andm is the number of nonzeros (edges). On a collection of test problems, the improved Sloan algorithm required, on the average, only twice the time required by the simpler RCM algorithm while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid that combines a spectral algorithm for envelope and wavefront reduction with a refinement step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the Sloan algorithm at the cost of greater running times. We illustrate how these reductions translate into tangible benefits for frontal Cholesky factorization and incomplete factorization preconditioning.

AMS subject classification

65F50 68R10 65F10 

Key words

Envelope reduction Laplacian matrices reordering algorithms spectral methods Sloan Algorithm sparse matrices wavefront reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anonymous,Harwell Subroutine Library, A Catalogue of Subroutines (Release 12). 1995.Google Scholar
  2. 2.
    C. C. Ashcraft,Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput., 16 (1995), pp. 1404–1411.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    J. E. Atkins, E. G. Boman, and B. Hendrickson,A spectral algorithm for the seriation problem. Tech. Report, Sandia National Lab, Albuquerque, NM.Google Scholar
  4. 4.
    S. T. Barnard, A. Pothen, and H. D. Simon,A spectral algorithm for envelope reduction of sparse matrices, J. Numerical Linear Algebra with Applications, 2 (1995), pp. 317–334. A shorter version has appeared in Supercomputing '93, IEEE Computer Society Press, pp. 493–502, 1993.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. G. Boman and B. Hendrickson,A multilevel algorithm for envelope reduction, Preprint, Sandia National Labs, Albuquerque, NM, 1996.Google Scholar
  6. 6.
    E. H. Cuthill and J. McKee,Reducing the bandwidth of sparse symmetric matrices, in Proceed. 24th Nat. Conf. Assoc. Comput. Mach., ACM Publications, 1969, pp. 157–172.Google Scholar
  7. 7.
    E. F. D'Azevedo, P. A. Forsyth, and W. P. Tang,Ordering methods for preconditioned conjugate gradients methods applied to unstructured grid problems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 944–961.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Duff and G. Meurant,The effect of ordering on preconditioned conjugate gradients, BIT, 29 (1989), pp. 635–657.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    I. S. Duff, A. M. Erisman, and J. K. Reid,Direct Methods for Sparse Matrices, Clarendon Press, Oxford, 1986.MATHGoogle Scholar
  10. 10.
    I. S. Duff, R. G. Grimes, and J. G. Lewis,Users' Guide for the Harwell-Boeing Sparse Matrix Collection, 1992.Google Scholar
  11. 11.
    I. S. Duff, J. K. Reid, and J. A. Scott,The use of profile reduction algorithms with a frontal code, Internat. J. Numer. Meth. Engrg., 28 (1989), pp. 2555–2568.MATHCrossRefGoogle Scholar
  12. 12.
    M. Fiedler,Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973), pp. 298–305.MATHMathSciNetGoogle Scholar
  13. 13.
    M. Fiedler,A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J., 25 (1975), pp. 619–633.MATHMathSciNetGoogle Scholar
  14. 14.
    A. George,Computer implementation of the finite element method, Tech. Report 208, Department of Computer Science, Stanford University, Stanford, CA, 1971.Google Scholar
  15. 15.
    A. George and J. W-H. Liu,The evolution of the minimum degree algorithm, SIAM Review, 31 (1989), pp. 1–19.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. George and A. Pothen,An analysis of spectral envelope-reduction via quadratic assignment problems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 706–732.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    N. E. Gibbs,Algorithm 509: A hybrid profile reduction algorithm, ACM Trans. Math. Software, 2 (1976), pp. 378–387.CrossRefGoogle Scholar
  18. 18.
    N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer,An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Num. Anal., 13 (1976), pp. 236–249.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    J. R. Gilbert, G. L. Miller, and S.-H. Teng,Geometric mesh partitioning: Implementation and experiments, Tech. Report CSL-94-13, Xerox Palo Alto Research Center, CA, 1994.Google Scholar
  20. 20.
    D. S. Greenberg and S. C. Istrail,Physical mapping with STS hybridization: opportunities and limits, Tech. Report, Sandia National Labs, Albuquerque, NM, 1994.Google Scholar
  21. 21.
    R. G. Grimes, D. J. Pierce, and H. D. Simon,A new algorithm for finding a pseudoperipheral node in a graph, SIAM J. Math. Anal. Appl., 11 (1990), pp. 323–334.MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Guattery and G. Miller,On the performance of spectral graph partitioning methods, in 6th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1995, ACM-SIAM, pp. 233–242.Google Scholar
  23. 23.
    C. Helmberg, B. Mohar, S. Poljak, and F. Rendl,A spectral approach to band-width and separator problems in graphs. Preprint, Department of Mathematics, University of Ljubljana, Lubljana, Slovenia, 1993.Google Scholar
  24. 24.
    B. Hendrickson and R. Leland,The Chaco User's Guide, Sandia National Laboratories, Albuquerque, NM, 1993.Google Scholar
  25. 25.
    B. Hendrickson and R. Leland,A multilevel algorithm for partitioning graphs, Tech. Report SAND 93-0074, Sandia National Laboratories, Albuquerque, NM, 1993.Google Scholar
  26. 26.
    B. Hendrickson and R. Leland,An improved spectral graph partitioning algorithm for mapping parallel computations, SIAM J. Sci. Comput., 16 (1995), pp. 452–469.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Juvan and B. Mohar,Laplace eigenvalue and bandwidth-type invariants of graphs. Preprint, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia, 1990.Google Scholar
  28. 28.
    M. Juvan and B. Mohar,Optimal linear labelings and eigenvalues of graphs, Discr. Appl. Math., 36 (1992), pp. 153–168.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. G. Lewis,Implementations of the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms, ACM Trans. Math. Software, 8 (1982), pp. 180–189.MATHCrossRefGoogle Scholar
  30. 30.
    Y. Lin and J. Yuan,Minimum profile of grid networks in structure analysis. Preprint, Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, 1993.Google Scholar
  31. 31.
    Y. Lin and J. Yuan,Profile minimization problem for matrices and graphs. Preprint, Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, 1993.Google Scholar
  32. 32.
    J. W-H. Liu,A generalized envelope method for sparse factorization by rows, Tech. Report CS-88-09, Department of Computer Science, York University, 1988.Google Scholar
  33. 33.
    J. W-H. Liu and A. H. Sherman,Comparative analysis of the Cuthill-Mckee and the reverse Cuthill-Mckee ordering algorithms for sparse matrices, SIAM J. Numer. Anal., 13 (1976), pp. 198–213.MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis,Automatic mesh partitioning, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W-H. Liu, eds., The IMA Volumes in Mathematics and its Applications, 56, Springer-Verlag, pp. 57–84.Google Scholar
  35. 35.
    G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee,Node and element resequencing using the Laplacian of a finite element graph, Part I, Internat. J. Numer. Meth. Engrg., 37 (1994), pp. 1511–1530.MATHCrossRefGoogle Scholar
  36. 36.
    G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee,Node and element resequencing using the Laplacian of a finite element graph, Part II, Internat. J. Numer. Meth. Engrg., 37 (1994), pp. 1531–1555.CrossRefGoogle Scholar
  37. 37.
    A. Pothen, H. D. Simon, and K. P. Liou,Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Pothen, H. D. Simon, and L. Wang,Spectral nested dissection, Tech. Report CS-92-01, Computer Science, Pennsylvania State University, University Park, PA, 1992.Google Scholar
  39. 39.
    S. W. Sloan,An algorithm for profile and wavefront reduction of sparse matrices, Internat. J. Numer. Meth. Engrg., 23 (1986), pp. 239–251.MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    L. Wang,Spectral Nested Dissection, PhD thesis, The Pennsylvania State University, 1994.Google Scholar

Copyright information

© BIT Foundation 1997

Authors and Affiliations

  • Gary Kumfert
    • 1
  • Alex Pothen
    • 1
    • 2
  1. 1.Department of Computer ScienceOld Dominion UniversityNorfolkUSA
  2. 2.NASA Langley Research CenterICASEHamptonUSA

Personalised recommendations