Skip to main content
Log in

Error growth analysis via stability regions for discretizations of initial value problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with numerical methods for the solution of linear initial value problems. Two main theorems are presented on the stability of these methods.

Both theorems give conditions guaranteeing a mild error growth, for one-step methods characterized by a rational function ϕ(z). The conditions are related to the stability regionS={z:z∈ℂ with |ϕ(z)|≤1}, and can be viewed as variants to the resolvent condition occurring in the reputed Kreiss matrix theorem. Stability estimates are presented in terms of the number of time stepsn and the dimensions of the space.

The first theorem gives a stability estimate which implies that errors in the numerical process cannot grow faster than linearly withs orn. It improves previous results in the literature where various restrictions were imposed onS and ϕ(z), including ϕ′(z)≠0 forz∈σS andS be bounded. The new theorem is not subject to any of these restrictions.

The second theorem gives a sharper stability result under additional assumptions regarding the differential equation. This result implies that errors cannot grow faster thann β, with fixed β<1.

The theory is illustrated in the numerical solution of an initial-boundary value problem for a partial differential equation, where the error growth is measured in the maximum norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Butcher,The Numerical Analysis of Ordinary Differential Equations, John Wiley, Chicester, 1987.

    MATH  Google Scholar 

  2. M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomée,The stability of rational approximations of analytic semigroups, BIT, 33 (1993), pp. 74–84.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker,Linear stability analysis in the numerical solution of initial value problems, Acta Numerica, 1993, pp. 199–237.

  4. M. B. Giles,Stability and convergence of discretizations of initial value p.d.e.’s, Report 96/06, Oxford University Comp. Lab., 1996.

  5. D. F. Griffiths, I. Christie, and A. R. Mitchell,Analysis of error growth for explicit difference schemes in conduction-convection problems, Internat. J. Numer. Meth. Engrg, 15 (1980), pp. 1075–1081.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ch. Grossmann and H.-G. Ross,Numerik partieller Differentialgleichungen, Teubner, Stuttgart, 1992.

    MATH  Google Scholar 

  7. E. Hairer and G. Wanner,Solving Ordinary Differential Equations, Vol. II, Springer, Berlin, 1991.

    MATH  Google Scholar 

  8. P. J. van der Houwen,Construction of Integration Formulas for Initial Value Problems, North-Holland, Amsterdam, New York, Oxford, 1977.

    MATH  Google Scholar 

  9. H. W. J. Lenferink and M. N. Spijker,A generalization of the numerical range of a matrix, Linear Algebra Appl., 140 (1990), pp. 251–266.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. W. J. Lenferink and M. N. Spijker,On a generalization of the resolvent condition in the Kreiss matrix theorem, Math. Comp., 57 (1991), pp. 211–220.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. W. J. Lenferink and M. N. Spijker,On the use of stability regions in the numerical analysis of initial value problems, Math. Comp., 57 (1991), pp. 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Lubich and O. Nevanlinna,On resolvent conditions and stability estimates, BIT 31 (1991), pp. 293–313.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. W. Morton,Stability of finite-difference approximations to a diffusion-convection equation. Int. J. Num. Meth. Engrg., 15 (1980), pp. 677–683.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Noye,Computational Techniques for Differential Equations, North-Holland, Amsterdam, 1984.

    MATH  Google Scholar 

  15. C. Palencia,Stability of rational multistep approximations of holomorphic semigroups, Math. Comp., 64 (1995), pp. 591–599.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. V. Parter,Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem, Numer. Math., 4 (1962), pp. 277–292.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. C. Reddy and L. N. Trefethen,Stability of the method of lines, Numer. Math., 62 (1992), pp. 235–267.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. D. Richtmyer and K. W. Morton,Difference Methods for Initial Value Problems, 2nd ed., John Wiley and Sons, New York, 1967.

    MATH  Google Scholar 

  19. M. N. Spijker,Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems, Math. Comp., 45 (1985), pp. 377–392.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. N. Spijker,Numerical ranges and stability estimates, Appl. Numer. Math. 13 (1993), pp. 242–249.

    Article  MathSciNet  Google Scholar 

  21. M. N. Spijker and F. A. J. Straetemans,Stability estimates for families of matrices of nonuniformly bounded order, Linear Algebra Appl., 239 (1996), pp. 77–102.

    MathSciNet  MATH  Google Scholar 

  22. M. N. Spijker and F. A. J. Straetemans,A note on the order of contact between sets in the complex plane, Report TW-96-06, Mathem. Instit., Leiden University, 1996.

  23. G. Stoyan,On Monotone Difference Schemes for Weakly Coupled Systems of Partial Differential Equations, Computational Mathematics, Banach Center Publications, Vol. 13, PWN-Polish Scientific Publishers, Warsaw, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijker, M.N., Straetemans, F.A.J. Error growth analysis via stability regions for discretizations of initial value problems. Bit Numer Math 37, 442–464 (1997). https://doi.org/10.1007/BF02510222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510222

AMS subject classification

Key words

Navigation