BIT Numerical Mathematics

, Volume 37, Issue 2, pp 442–464 | Cite as

Error growth analysis via stability regions for discretizations of initial value problems

  • M. N. Spijker
  • F. A. J. Straetemans


This paper deals with numerical methods for the solution of linear initial value problems. Two main theorems are presented on the stability of these methods.

Both theorems give conditions guaranteeing a mild error growth, for one-step methods characterized by a rational function ϕ(z). The conditions are related to the stability regionS={z:z∈ℂ with |ϕ(z)|≤1}, and can be viewed as variants to the resolvent condition occurring in the reputed Kreiss matrix theorem. Stability estimates are presented in terms of the number of time stepsn and the dimensions of the space.

The first theorem gives a stability estimate which implies that errors in the numerical process cannot grow faster than linearly withs orn. It improves previous results in the literature where various restrictions were imposed onS and ϕ(z), including ϕ′(z)≠0 forz∈σS andS be bounded. The new theorem is not subject to any of these restrictions.

The second theorem gives a sharper stability result under additional assumptions regarding the differential equation. This result implies that errors cannot grow faster thann β, with fixed β<1.

The theory is illustrated in the numerical solution of an initial-boundary value problem for a partial differential equation, where the error growth is measured in the maximum norm.

AMS subject classification

65L05 65L20 65M12 65M20 

Key words

Initial value problem discretization numerical method error growth stability analysis stability region resolvent condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Butcher,The Numerical Analysis of Ordinary Differential Equations, John Wiley, Chicester, 1987.MATHGoogle Scholar
  2. 2.
    M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomée,The stability of rational approximations of analytic semigroups, BIT, 33 (1993), pp. 74–84.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker,Linear stability analysis in the numerical solution of initial value problems, Acta Numerica, 1993, pp. 199–237.Google Scholar
  4. 4.
    M. B. Giles,Stability and convergence of discretizations of initial value p.d.e.’s, Report 96/06, Oxford University Comp. Lab., 1996.Google Scholar
  5. 5.
    D. F. Griffiths, I. Christie, and A. R. Mitchell,Analysis of error growth for explicit difference schemes in conduction-convection problems, Internat. J. Numer. Meth. Engrg, 15 (1980), pp. 1075–1081.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ch. Grossmann and H.-G. Ross,Numerik partieller Differentialgleichungen, Teubner, Stuttgart, 1992.MATHGoogle Scholar
  7. 7.
    E. Hairer and G. Wanner,Solving Ordinary Differential Equations, Vol. II, Springer, Berlin, 1991.MATHGoogle Scholar
  8. 8.
    P. J. van der Houwen,Construction of Integration Formulas for Initial Value Problems, North-Holland, Amsterdam, New York, Oxford, 1977.MATHGoogle Scholar
  9. 9.
    H. W. J. Lenferink and M. N. Spijker,A generalization of the numerical range of a matrix, Linear Algebra Appl., 140 (1990), pp. 251–266.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    H. W. J. Lenferink and M. N. Spijker,On a generalization of the resolvent condition in the Kreiss matrix theorem, Math. Comp., 57 (1991), pp. 211–220.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    H. W. J. Lenferink and M. N. Spijker,On the use of stability regions in the numerical analysis of initial value problems, Math. Comp., 57 (1991), pp. 221–237.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    C. Lubich and O. Nevanlinna,On resolvent conditions and stability estimates, BIT 31 (1991), pp. 293–313.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    K. W. Morton,Stability of finite-difference approximations to a diffusion-convection equation. Int. J. Num. Meth. Engrg., 15 (1980), pp. 677–683.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    J. Noye,Computational Techniques for Differential Equations, North-Holland, Amsterdam, 1984.MATHGoogle Scholar
  15. 15.
    C. Palencia,Stability of rational multistep approximations of holomorphic semigroups, Math. Comp., 64 (1995), pp. 591–599.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. V. Parter,Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem, Numer. Math., 4 (1962), pp. 277–292.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    S. C. Reddy and L. N. Trefethen,Stability of the method of lines, Numer. Math., 62 (1992), pp. 235–267.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. D. Richtmyer and K. W. Morton,Difference Methods for Initial Value Problems, 2nd ed., John Wiley and Sons, New York, 1967.MATHGoogle Scholar
  19. 19.
    M. N. Spijker,Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems, Math. Comp., 45 (1985), pp. 377–392.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    M. N. Spijker,Numerical ranges and stability estimates, Appl. Numer. Math. 13 (1993), pp. 242–249.MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. N. Spijker and F. A. J. Straetemans,Stability estimates for families of matrices of nonuniformly bounded order, Linear Algebra Appl., 239 (1996), pp. 77–102.MathSciNetMATHGoogle Scholar
  22. 22.
    M. N. Spijker and F. A. J. Straetemans,A note on the order of contact between sets in the complex plane, Report TW-96-06, Mathem. Instit., Leiden University, 1996.Google Scholar
  23. 23.
    G. Stoyan,On Monotone Difference Schemes for Weakly Coupled Systems of Partial Differential Equations, Computational Mathematics, Banach Center Publications, Vol. 13, PWN-Polish Scientific Publishers, Warsaw, 1984.Google Scholar

Copyright information

© BIT Foundaton 1997

Authors and Affiliations

  • M. N. Spijker
    • 1
  • F. A. J. Straetemans
    • 1
  1. 1.Department of Mathematics and Computer Science University of LeidenLeidenThe Netherlands

Personalised recommendations