A data modeling abstraction for describing triangular mesh algorithms
 44 Downloads
 1 Citations
Abstract

conventional structured pseudocode,

the mesh conceived as a globally accessible database,

variables typed using the data model, and

commands based on a database query and modification syntax.
It is argued that the resulting paradigm supports descriptions that are precise, complete, and relatively representation independent. It thus supports the role of algorithms in providing templates for coding, while also supporting the role of algorithms as vehicles for the communication and documentation of ideas.
A simple data model for planar triangular meshes is defined. Using it, the technique is demonstrated by a suite of familiar algorithms for constructing the Delaunay triangulation, using the divideandconquer and incremental approaches. Data dependencies in the model of triangular meshes are noted, and their implications for relating the model to several standard mesh representations is discussed.
AMS subject classification
G.4 I.3.5Key words
Triangulation algorithms Delaunay triangulation relational model divideandconquer finite element meshReferences
 1.F. Aurenhammer,Voronoi diagrams—a survey of a fundamental geometric data structure, ACM Computing Surveys, 23 (1991) pp. 345–405.CrossRefGoogle Scholar
 2.O. Axelsson and V. A. Barker,Finite Element Solution of Boundary Value Problems, Academic Press, New York, 1984.MATHGoogle Scholar
 3.R. E. Bank, A. H. Sherman, and A. Weiser,Refinement algorithms and data structures for regular local mesh refinement, in Scientific Computing; IMACS Conference, R. S. Stepleman ed., North Holland, 1983, pp. 3–18.Google Scholar
 4.E. Bruzzone and L. De Floriani,An efficient data structure for threedimensional triangulations, in Proceedings of CG International 90, T. S. Chua and T. L. Kunii, eds., SpringerVerlag, June 1990, pp. 425–441.Google Scholar
 5.E. Bruzzone and L. De Floriani,Extracting adjacency relationships from a modular boundary model, Computer Aided Design, 23(5) (1991), pp. 344–356.MATHCrossRefGoogle Scholar
 6.A. Bykat,Automatic generation of triangular grid: isubdivision of a general polygon into convex subregions. iitriangulation of convex polygons, Internat. J. Numer. Methods Engrg., 10 (1976), pp. 1329–1342.MATHCrossRefGoogle Scholar
 7.J. C. Cavendish, Automatic triangulation of arbitrary planar domains for the finite element method, Internat. J. Numer. Methods Engrg., 8 (1974), pp. 679–696.MATHCrossRefGoogle Scholar
 8.A. K. Cline and R. J. Renka,A storageefficient method for construction of a Thiessen triangulation, Rocky Mountain J. Math., 14 (1984), pp. 119–139.MATHMathSciNetCrossRefGoogle Scholar
 9.A. K. Cline and R. J. Renka,A constrained twodimensional triangulation and the solution of closest node problems in the presence of barriers, SIAM J. Numer. Anal., 27 (1990), pp. 1305–1321.MATHMathSciNetCrossRefGoogle Scholar
 10.D. P. Dobkin and M. J. Laszlo,Primitives for the manipulation of threedimensional subdivisions, in Proceedings of Third Annual Symposium on Computational Geometry, ACM Press, 1987, pp. 246–259.Google Scholar
 11.S. Farestam and R. B. Simpson,On correctness and efficiency for advancing front techniques of finite element mesh generation, BIT, 35 (1995), pp. 1210–232.MathSciNetCrossRefGoogle Scholar
 12.S. Fortune,Numerical stability of algorithms for 2d Delaunay triangulations, Proceedings of Eighth Annual Symposium on Computational Geometry, ACM Press, 1992, pp. 208–217.Google Scholar
 13.P. L. George,Automatic Mesh Generation, John Wiley, Paris, 1991.MATHGoogle Scholar
 14.L. Guibas and J. Stolfi,Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, ACM Trans. on Graphics, 4 (1985), pp. 74–123.MATHCrossRefGoogle Scholar
 15.C. M. Hoffman,The problems of accuracy and robustness in geometric computation, Computer, Volume 22:3 (1989) pp. 31–42.CrossRefGoogle Scholar
 16.C. M. Hoffmann,Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, San Mateo, CA, 1989.Google Scholar
 17.B. Joe,Delaunay triangular meshes in convex polygons, SIAM J. Sci. Stat. Comp, 7 (1986), pp. 514–539.MATHMathSciNetCrossRefGoogle Scholar
 18.B. Joe, Threedimensional triangulations from local transformations, SIAM J. Sci. Stat. Comp, 10 (1989), pp. 718–741.MATHMathSciNetCrossRefGoogle Scholar
 19.B. Joe and R. B. Simpson, Corrections to Lee's visibility polygon algorithm, BIT, 27 (1987), pp. 458–473.MATHCrossRefGoogle Scholar
 20.M. Korth and A. Silberschatz,Database System Concepts, 2nd ed. McGrawHill, New York, 1991.MATHGoogle Scholar
 21.C. L. Lawson,Software for c^{1} surface interpolation, in Mathematical Software III, J. R. Rice, ed., Academic Press, 1977.Google Scholar
 22.D. T. Lee and B. J. Schachter,Two algorithms for constructing a Delaunay triangulation, Internat. J. Comp. Information Science, 9 (1980), pp. 219–242.MATHMathSciNetCrossRefGoogle Scholar
 23.B. A. Lewis and J. S. Robinson,Triangulation of planar regions with applications, Comput. J., 21 (1978), pp. 324–329.MATHCrossRefGoogle Scholar
 24.J. O'Rourke,Computational Geometry in C, Cambridge University Press, 1994.Google Scholar
 25.O. PalaciosVelez and B. C. Renaud,A dynamic heirarchical subdivision algorithm for computing Delaunay triangulations and other closestpoint problems, ACM Trans. Math. Software, 16 (1990), pp. 275–292.MATHMathSciNetCrossRefGoogle Scholar
 26.F. P. Preparata and M. I. Shamos,Computational Geometry: an Introduction, SpringerVerlag, New York, 1985.Google Scholar
 27.R. B. SimpsonA twodimensional mesh verification algorithm, SIAM J. Sci. Stat. Comp., 2 (1981), pp. 455–473.MATHMathSciNetCrossRefGoogle Scholar
 28.R. B. Simpson,A database abstraction for unstructured triangular mesh algorithms, CERFACS, Tech. Report TR/PA/92/66, January 1992, Toulouse, France.Google Scholar
 29.D. C. Tsichritzis and F. H. Lochovsky,Data Models, PrenticeHall, Englewood Cliffes, NJ, 1982.Google Scholar
 30.G. E. Weddell,Rdm reference manual, Tech. Report CS8941, Computer Science Department, University of Waterloo, Canada, 1989.Google Scholar
 31.N. Wirth,Algorithms+Data Structures=Programs, PrenticeHall, Englewood Cliffs, NJ, 1976.MATHGoogle Scholar
 32.T. C. Woo,A combinatorial analysis of boundary data structure schemata, IEEE Computer Graphics and Applications, 5(3) (1985), pp. 19–27.MathSciNetCrossRefGoogle Scholar
 33.T. C. Woo and J. D. Wolter,A constant expected time, linear storage data structure for representing threedimensional objects, IEEE Transactions on Systems, Man and Cybernetics, SMC14(3 (1984), pp. 510–515.Google Scholar
 34.M. A. Yerry and M. S. Shephard,Automatic threedimensional mesh generation by the modifiedoctree technique, Internat. J. Numer. Methods Engrg., 20 (1984), pp. 1965–1990.MATHCrossRefGoogle Scholar
 35.P. Zave and W. C. Rheinboldt,Design of an adaptive, parallel finiteelement system, ACM Trans. math. Software, 5(1) (1979), pp. 1–17.MATHMathSciNetCrossRefGoogle Scholar