Chromosoma

, Volume 105, Issue 1, pp 12–19 | Cite as

Nucleolar organizer expression inAllium cepa L. chromosomes

  • Francisco Panzera
  • M. Inmaculada Giménez-Abián
  • Jorge F. López-Sáez
  • Gonzalo Giménez-Martín
  • Angeles Cuadrado
  • Peter J. Shaw
  • Alison F. Beven
  • José L. Cánovas
  • Consuelo De la Torre
Article

Abstract

Roots fromAllium cepa L. (cv.Francesa) bulbs in which a maximum of two nucleoli per nucleus developed were selected for this study. Five rDNA clusters were detected by fluorescent in situ hybridization on chromosomal squashes (2n=16) with a rhodamine-labelled wheat, rDNA repeat. The rDNA clusters were located on four chromosomes: the largest cluster occurred on the small arm of a single homologue of the smallest pair 8. Its homologue showed two different small rDNA. clusters, one near each telomere. The two homologues of the satellited chromosomes 6 also showed different rDNA contents, which were intermediate to those found in pair 8. The same five well-differentiated hybridization signals were observed in interphase cells that were inactive in transcription because they were in dormant roots, or in proliferating ones in which the synthesis of the large rRNA precursor was prevented. After multipolarizing agent was applied in anaphase followed by inhibition of cytokinesis, multinucleate autotetraploid cells were formed, which often contained more than four nucleoli. Thus, at least two of the three nucleolar organizer regions that consistently failed to develop a nucleolus in normal mononucleate cells were capable of developing nucleoli when segregated into different nuclei in multinucleate cells.

Keywords

Diploid Cell Multinucleate Cell Deoxyadenosine Onion Bulb Cordycepin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell SP, Learned RM, Jantzen HM, Tjian R (1988) Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241: 1192–1197PubMedCrossRefGoogle Scholar
  2. Benavente R, Rose KM, Reimer R, Hügle-Dörr B, Scheer U (1987) Inhibition of nucleolar reformation after microinjection of antibodies to RNA polymerase I into mitotic cells. J Cell Biol 105:1483–1491PubMedCrossRefGoogle Scholar
  3. Comai L, Zomerkijk J, Beckerman H, Zhou S, Admon A, Tjian R (1994) Reconstitution of transcription factor SL-1: exclusive binding of TBF by SL-1 or TFIID subunits. Science 266: 1966–1972PubMedCrossRefGoogle Scholar
  4. Cortés F, Escalza P (1986) Analysis of different banding patterns and late replicating regions in chromosomes ofAllium cepa, A. sativum andA. nigrum. Genetica 71:39–46CrossRefGoogle Scholar
  5. Cuadrado A, Jouve N (1994) Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x-triticale. Chromosome Res 2:331–338PubMedCrossRefGoogle Scholar
  6. De la Torre C, Giménez-Abián JF, González-Fernández A (1991) Dominance of a NOR (nucleolar organizer region) over its allele and over its sister NOR after asymmetric 5-azacytidine substitution in plant chromosomes. J Cell Sci 100:667–674Google Scholar
  7. Echols H (1990) Nucleoprotein structures initiating DNA replication, transcription and site-specific recombination. J Biol Chem 265:14697–14700PubMedGoogle Scholar
  8. García-Blanco M, Miller DD, Sheetz MP (1995) Nuclear spreads: I. Visualization of bipartite ribosomal RNA domains. J Cell Biol 128:15–27PubMedCrossRefGoogle Scholar
  9. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedGoogle Scholar
  10. Giménez-Abián MI, De la Torre C, López-Sáez JF, Cánovas JL (1989) Rates of cell entrance into different periods of the cell cycle sustain that negative exponential cell age distribution occurs inAllium cepa L. meristems. Cell Biol Int Rep 13: 845–850CrossRefGoogle Scholar
  11. Giménez-Martín G, González-Fernández A, De la Torre C, Fernández-Gómez ME (1971) Partial initiation of endomitosis by 3′-deoxyadenosine. Chromosoma 33:361–371PubMedCrossRefGoogle Scholar
  12. Giménez-Martín G, De la Torre C, Fernández-Gómez ME, González-Fernández A (1974) Experimental analysis of nucleolar reorganization. J Cell Biol 60:502–507PubMedCrossRefGoogle Scholar
  13. Giménez-Martín G, Panzera F, Cánovas JL, De la Torre C, López-Sáez JF (1992) A limited number of chromosomes makes a nucleus competent to respond to inducers of replication and mitosis in a plant. Eur J Cell Biol 58:163–171PubMedGoogle Scholar
  14. Ingle J, Sinclair J (1972) Ribosomal RNA genes and plant development. Nature 235:30–32PubMedCrossRefGoogle Scholar
  15. Jiménez-García LF, Segura-Valdez ML, Ochs RL, Rothblum I, Hannan R, Spector DL (1994) Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol Biol Cell 5:955–966PubMedGoogle Scholar
  16. Maggini F, Carmona MJ (1981) Sequence heterogeneity of the ribosomal DNA inAllium cepa (Liliaceae). Protoplasma 108: 163–171CrossRefGoogle Scholar
  17. Martini G, O'Dell M, Flavell RB (1982) Partial inactivation of wheat nucleolus organizer by the nucleolus organizer chromosomes fromAegilops umbellulata. Chromosoma 84:687–700CrossRefGoogle Scholar
  18. Morcillo G, De la Torre C (1979) Mapping nucleologenesis in relation to transcription. Biol Cell 36:1–6Google Scholar
  19. Navashin M (1934) Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia 5:169–203Google Scholar
  20. Penman S, Fan H, Perlman S, Rosbach M, Weinberg R, Zylber E (1970) Distinct RNA synthesis of the HeLa cell. Cold Spring Harbor Symp Quant Biol 35:561–575Google Scholar
  21. Reeder RH (1985) Mechanisms of nucleolar dominance in animals and plants (a review). J Cell Biol 101:2013–2016PubMedCrossRefGoogle Scholar
  22. Ricroch A, Peffley EB, Baker RJ (1992) Chromosomal location of rDNA inAllium: in situ hybridization using biotin- and fluorescein-labelled probes. Theor Appl Genet 83:413–418CrossRefGoogle Scholar
  23. Roussel P, Hernández-Verdún D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465–472PubMedCrossRefGoogle Scholar
  24. Sato S (1981) Cytological studies on the satellited chromosomes ofAllium cepa. Caryologia 34:431–440Google Scholar
  25. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions inAllium. Chromosoma 92: 143–148CrossRefGoogle Scholar
  26. Sparrow AH, Price HJ, Underbrink AG (1972) A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp Biol 23:451–493PubMedGoogle Scholar
  27. Wallace H, Eldredge WHR (1971) Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity 27:1–13Google Scholar
  28. Zomerdijk J, Beckmann H, Comai L, Tjian R (1994) Assembly of trancriptionally active RNA polymerase I initiation factor SL-1 from recombinant subunits. Science 266:2015–2018PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Francisco Panzera
    • 1
    • 2
  • M. Inmaculada Giménez-Abián
    • 1
  • Jorge F. López-Sáez
    • 3
  • Gonzalo Giménez-Martín
    • 1
  • Angeles Cuadrado
    • 4
  • Peter J. Shaw
    • 5
  • Alison F. Beven
    • 5
  • José L. Cánovas
    • 1
  • Consuelo De la Torre
    • 1
  1. 1.Centro de Investigaciones BiológicasCSICMadridSpain
  2. 2.Sección Genética Evolutiva, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Facultad de BiologíaUniversidad Autónoma de MadridMadridSpain
  4. 4.Departamento de Biología Celular y Genética, Faculdad de CienciasUniversidad de AlcaláAlcalá de HenaresSpain
  5. 5.Department of Cell BiologyJohn Innes CentreNorwichUK

Personalised recommendations