Physical Oceanography

, Volume 11, Issue 6, pp 495–508 | Cite as

Evaluation of the influence of surface films on short wind waves and the characteristics of the boundary layer of the atmosphere

  • S. A. Grodsky
  • V. N. Kudryavtsev
  • V. K. Makin
Thermohydrodynamics of the Ocean
  • 24 Downloads

Abstract

With the help of a combined model of wind and waves, we study the influence of films of surfactants on the spectrum of short wind waves and the parameters of the lowest layer of the atmosphere. It is shown that the films of surfactants decrease the roughness of the sea surface as a result of suppression of short wind waves, which decreases the coefficient of resistance of the sea surface and the coefficient of turbulent heat exchange. The maximum influence of films on the exchange coefficients is attained forU∼10 m/s. In this case, the relative decrements of the coefficients of resistance and turbulent heat exchange are equal to 15 and 9%, respectively.

Keywords

Surfactant Gravitational Wave Viscous Dissipation Wind Wave Clean Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deitz, R. S. and La Fond, E. C. Natural slicks on the ocean.J. Mar. Res. (1950)9, 69–76.Google Scholar
  2. 2.
    Lucassen-Reynders, E. H. and Lucassen, J. Properties of capillary waves.Adv. Colloid Interface Sci. (1969)2, 347–395.CrossRefGoogle Scholar
  3. 3.
    Cini, R. and Lombardidni, P. P. Damping effects of monolayers on surface wave motion in liquid.J. Colloid Interface Sci. (1978)65, No. 2, 387–389.CrossRefGoogle Scholar
  4. 4.
    Levich, V. G.Physicochemical Hydrodynamics. Moscow: Izd. Akad. Nauk SSSR (1952).Google Scholar
  5. 5.
    Bass, F. G. and Fuks, I. M.Scattering of Waves on Statistically Irregular Surfaces. Moscow: Nauka (1972).Google Scholar
  6. 6.
    Makin, V. K., Kudryavtsev, V. N., and Mastenbroek, C. Drag of the sea surface.Bound. -Layer Met. (1995)73, 159–182.CrossRefGoogle Scholar
  7. 7.
    Makin, V. K. and Kudryavtsev, V. N. Coupled sea surface atmosphere model. Part 1. Wind over waves coupling. KNMI MEMO WM-97-11 (1997).Subm. to J. Geophys. Res. Google Scholar
  8. 8.
    Kudryavtsev, V. N., Makin, V. K., and Chapron, B. Coupled sea surface atmosphere model. Part I. Spectrum of short wind waves. KNMI MEMO WM-97-10 (1997).Subm. to J. Geophys. Res. Google Scholar
  9. 9.
    Ermakov, S. A., Salashin, S. G., and Panchenko, A. R. Film slicks on the sea surface and some mechanisms of their formation.Dyn. Atmosph. Ocean. (1992)16, 279–304.CrossRefGoogle Scholar
  10. 10.
    Kudryavtsev, V. N. Physical model of the capillary-gravitational zone of the waves spectrum.Morsk. Gidrofiz. Zh. (1996) No. 2, 3–14.Google Scholar
  11. 11.
    Donelan, M. A. and Pierson, W. J. Radar scattering and equilibrium range in wind-generated waves with application to scatterometry.J. Geophys. Res. (1987)92, 4971–5029.Google Scholar
  12. 12.
    Ermakov, S. A., Ruvinsky, K. D., Salashin, S. G.,et al. Experimental study of the generation of capillary-gravitational ripple by strongly nonlinear waves on the surface of a deep liquid. Gorky: (1985) (Preprint/Inst. Appl. Phys., Acad. Sci. of the USSR).Google Scholar
  13. 13.
    Donelan, M. A., Hamilton, J., and Hui, W. H. Directional spectra of wind-generated waves.Phil. Trans. R. Soc. London. (1985)A315, 509–562.Google Scholar
  14. 14.
    Plant, W. J. A relation between wind stress and wave slope.J. Geophys. Res. (1982)87, 1961–1967.Google Scholar
  15. 15.
    Makin, V. K. A note on wind speed and sea state dependence of the heat exchange coefficient.Bound. -Layer Met. (1998) (accepted).Google Scholar
  16. 16.
    Dyer, A. J. A review of flux-profile relationships.Bound. -Layer Meteor. (1974)7, 363–372.CrossRefGoogle Scholar
  17. 17.
    Fernandez, D. M., Vesecky, J. F., Napolitano, D. J., Khuri-Yakub, B. T., and Mann, J. A. Computation of ripple wave parameters: A comparison of methods.J. Geophys. Res. (1992)97, C4, 5207–5213.Google Scholar
  18. 18.
    Barger, W. R. and Means, J. C. Clues to the structure of marine organic materials from the study of physical properties of surface films. In: Sigleo, A. C. and Hattori, A. (Eds).Marine and Estuarine Geochemistry. Chelsea (Mich.): Lewis (1985), pp. 44–67.Google Scholar
  19. 19.
    Frew, N. M. and Nelson, R. K. Scaling of marine microlayer film surface pressure-area isotherms using chemical attributes.J. Geophys. Res. (1992)97, C4, 5291–5300.Google Scholar
  20. 20.
    Phillips, O. M.The Dynamics of the Upper Ocean. Cambridge: University Press (1966).Google Scholar
  21. 21.
    Large, W. G. and Pond, S. Sensible and latent heat flux measurements over the ocean.J. Phys. Oceanogr. (1982)12, 464–482.CrossRefGoogle Scholar
  22. 22.
    Wu, J. Wind stress coefficients over sea surface from breeze to hurricane.J. Geophys. Res. (1982)87, 9704–9706.CrossRefGoogle Scholar
  23. 23.
    Cox, C. and Munk, W. Slopes of the sea surface deduced from the photographs of sun glitter.Bull. of the Scripps Inst. of Oceanogr., La Jolla Univ. of Calif., (1956)6, No. 9, 401–488.Google Scholar
  24. 24.
    Ermakov, S. A., Zujkova, E. M., Panchenko, A. R., Salashin, S. G., Talipova, T. G., and Titov, V. I. Surface film effect on short wind waves.Dyn. Atmosph. Ocean. (1986)10, 31–50.CrossRefGoogle Scholar

Copyright information

© VSP 2001

Authors and Affiliations

  • S. A. Grodsky
  • V. N. Kudryavtsev
  • V. K. Makin

There are no affiliations available

Personalised recommendations