Communications in Mathematical Physics

, Volume 183, Issue 1, pp 161–181 | Cite as

A system of difference equations with elliptic coefficients and bethe vectors

  • Takashi Takebe
Article

Abstract

An elliptic analogue of theq deformed Knizhnik-Zamolodchikov equations is introduced. A solution is given in the form of a Jackson-type integral of Bethe vectors of the XYZ-type spin chains.

Keywords

Difference Equation Spectral Parameter Spin Chain Infinite Product Vertex Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Aomoto, K.: A note on holonomicq-difference systems. In: Algebraic Analysis, vol 1, M. Kashiwara and T. Kawai eds., Boston: Academic Press, 1988, pp. 25–28Google Scholar
  2. [B]
    Baxter, R.J.: Partition Function of the Eight-Vertex Lattice Model. Ann. Phys.70, 193–228 (1972); One-Dimensional Anisotropic Heisenberg Chain. Ann. Phys.70, 323–337 (1972); Eight-Vertex Model in Lattice Statistics and One-Dimensional Anisotropic Heisenberg Chain I, II, III, Ann. Phys.76, 1–24, 25–47, 48–71 (1973)MATHMathSciNetCrossRefADSGoogle Scholar
  3. [Ch]
    Cherednik, I.V.: On the properties of factorizedS matrices in elliptic functions. Yad. Fiz.36, 549–557 (1982) (in Russian); Sov. J. Nucl. Phys.36, 320–324 (1982) (English transl.); Some finite-dimensional representations of generalized Sklyanin algebra. Funkts. analiz i ego Prilozh.19, 89–90 (1984) (in Russian); Func. Anal. Appl.19, 77–79 (1985) (English transl.)MathSciNetGoogle Scholar
  4. [DJKMO]
    Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly Solvable SOS Models I. Nucl. Phys.B290 [FS20] 231–273 (1987); II. Adv. Stud. Pure Math.16, 17–122 (1988)MATHMathSciNetCrossRefADSGoogle Scholar
  5. [E]
    Etingof, P.I.: Difference equations with elliptic coefficients and quantum affine algebras. hep-th/9312057, (1993), 27 pp.Google Scholar
  6. [FFR]
    Feigin, B.L., Frenkel, E., Reshetikhin N.Yu.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys.166, 27–62 (1994)MATHMathSciNetCrossRefADSGoogle Scholar
  7. [F]
    Felder, G.: Elliptic quantum groups. Talk given at 11th International Conference on Mathematical Physics (ICMP-11), Paris, France, 18–23 July, 1994, hep-th/9412207Google Scholar
  8. [FR]
    Frenkel, I.B., Reshetikhin, N.Yu.: Quantum affine algebras, commutative systems of difference equations and elliptic solutions to the Yang-Baxter equations. In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, Singapore World Scientific, 1992, pp. 46–107; Quantum affine algebras and holonomic difference equations. Commun. Math. Phys.146, 1–60 (1992)Google Scholar
  9. [H]
    Hasegawa, K.: Crossing symmetry in elliptic solutions of the Yang-Baxter equation and a new L-operator for Belavin’s solution. J. Phys. A26, 3211–3228 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  10. [HZ]
    Hou, B.-Y., Zhou, Y.-K.: Fusion procedure and Sklyanin algebra. J. Phys. A: Math. Gen.23, 1147–1154 (1990); Zhou, Y.-K., Hou, B.-Y.: On the fusion of face and vertex models. J. Phys. A: Math. Gen.22, 5089–5096 (1989)MATHMathSciNetCrossRefADSGoogle Scholar
  11. [JMN]
    Jimbo, M., Miwa, T., Nakayashiki, A.: Difference equations for the correlation functions of the eight vertex model. J. Phys. A26, 2199–2210 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  12. [Ma]
    Matsuo, A.: Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations. Commun. Math. Phys.151, 263–273 (1993); Quantum algebra structure of certain Jackson integrals. Commun. Math. Phys.157, 479–498 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  13. [Mu]
    Mumford, D.: Tata Lectures on Theta I. Basel-Boston: Birkhäuser, 1982Google Scholar
  14. [R]
    Reshetikhin, N.Yu.: Jackson-Type Integrals, Bethe Vectors, and Solutions to a Difference Analog of the Knizhnik-Zamolodchikov System. Lett. Math. Phys.26, 153–165 (1992)MATHMathSciNetCrossRefGoogle Scholar
  15. [S1]
    Sklyanin, E.K.: Some Algebraic Structures Connected with the Yang-Baxter Equation. Funkts. analiz i ego Prilozh.16–4, 27–34 (1982) (in Russian); Funct. Anal. Appl.16, 263–270 (1983) (English transl.)MathSciNetGoogle Scholar
  16. [S2]
    Skyanin, E.K.: Some Algebraic Structures Connected with the Yang-Baxter Equation. Representations of Quantum Algebras. Funkts. analiz i ego Prilozh.17–4, 34–48 (1983) (in Russian); Funct. Anal. Appl.17, 273–284 (1984) (English transl.)Google Scholar
  17. [T1]
    Takebe, T.: Generalized Bethe ansatz with the general spin representations of the Sklyanin algebra. J. Phys. A: Math. Gen25, 1071–1083 (1992); Bethe Ansatz for Higher Spin Eight-Vertex Models. J. Phys. A: Math. Gen.28, 6675–6706 (1995)MATHMathSciNetCrossRefADSGoogle Scholar
  18. [T2]
    Takebe, T.: Bethe Ansatz for Higher Spin XYZ Models—Low-lying excitations—. J. Phys. A: Math. Gen.29, 6961–6966 (1996)MATHMathSciNetCrossRefADSGoogle Scholar
  19. [TF]
    Takhtajan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Uspekhi Mat. Nauk34:5, 13–63 (1979) (in Russian); Russ. Math. Surv.34:5, 11–68 (1979) (English transl.)Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Takashi Takebe
    • 1
  1. 1.Department of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations