Communications in Mathematical Physics

, Volume 183, Issue 1, pp 161–181 | Cite as

A system of difference equations with elliptic coefficients and bethe vectors

  • Takashi Takebe


An elliptic analogue of theq deformed Knizhnik-Zamolodchikov equations is introduced. A solution is given in the form of a Jackson-type integral of Bethe vectors of the XYZ-type spin chains.


Difference Equation Spectral Parameter Spin Chain Infinite Product Vertex Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Aomoto, K.: A note on holonomicq-difference systems. In: Algebraic Analysis, vol 1, M. Kashiwara and T. Kawai eds., Boston: Academic Press, 1988, pp. 25–28Google Scholar
  2. [B]
    Baxter, R.J.: Partition Function of the Eight-Vertex Lattice Model. Ann. Phys.70, 193–228 (1972); One-Dimensional Anisotropic Heisenberg Chain. Ann. Phys.70, 323–337 (1972); Eight-Vertex Model in Lattice Statistics and One-Dimensional Anisotropic Heisenberg Chain I, II, III, Ann. Phys.76, 1–24, 25–47, 48–71 (1973)MATHMathSciNetCrossRefADSGoogle Scholar
  3. [Ch]
    Cherednik, I.V.: On the properties of factorizedS matrices in elliptic functions. Yad. Fiz.36, 549–557 (1982) (in Russian); Sov. J. Nucl. Phys.36, 320–324 (1982) (English transl.); Some finite-dimensional representations of generalized Sklyanin algebra. Funkts. analiz i ego Prilozh.19, 89–90 (1984) (in Russian); Func. Anal. Appl.19, 77–79 (1985) (English transl.)MathSciNetGoogle Scholar
  4. [DJKMO]
    Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly Solvable SOS Models I. Nucl. Phys.B290 [FS20] 231–273 (1987); II. Adv. Stud. Pure Math.16, 17–122 (1988)MATHMathSciNetCrossRefADSGoogle Scholar
  5. [E]
    Etingof, P.I.: Difference equations with elliptic coefficients and quantum affine algebras. hep-th/9312057, (1993), 27 pp.Google Scholar
  6. [FFR]
    Feigin, B.L., Frenkel, E., Reshetikhin N.Yu.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys.166, 27–62 (1994)MATHMathSciNetCrossRefADSGoogle Scholar
  7. [F]
    Felder, G.: Elliptic quantum groups. Talk given at 11th International Conference on Mathematical Physics (ICMP-11), Paris, France, 18–23 July, 1994, hep-th/9412207Google Scholar
  8. [FR]
    Frenkel, I.B., Reshetikhin, N.Yu.: Quantum affine algebras, commutative systems of difference equations and elliptic solutions to the Yang-Baxter equations. In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, Singapore World Scientific, 1992, pp. 46–107; Quantum affine algebras and holonomic difference equations. Commun. Math. Phys.146, 1–60 (1992)Google Scholar
  9. [H]
    Hasegawa, K.: Crossing symmetry in elliptic solutions of the Yang-Baxter equation and a new L-operator for Belavin’s solution. J. Phys. A26, 3211–3228 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  10. [HZ]
    Hou, B.-Y., Zhou, Y.-K.: Fusion procedure and Sklyanin algebra. J. Phys. A: Math. Gen.23, 1147–1154 (1990); Zhou, Y.-K., Hou, B.-Y.: On the fusion of face and vertex models. J. Phys. A: Math. Gen.22, 5089–5096 (1989)MATHMathSciNetCrossRefADSGoogle Scholar
  11. [JMN]
    Jimbo, M., Miwa, T., Nakayashiki, A.: Difference equations for the correlation functions of the eight vertex model. J. Phys. A26, 2199–2210 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  12. [Ma]
    Matsuo, A.: Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations. Commun. Math. Phys.151, 263–273 (1993); Quantum algebra structure of certain Jackson integrals. Commun. Math. Phys.157, 479–498 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  13. [Mu]
    Mumford, D.: Tata Lectures on Theta I. Basel-Boston: Birkhäuser, 1982Google Scholar
  14. [R]
    Reshetikhin, N.Yu.: Jackson-Type Integrals, Bethe Vectors, and Solutions to a Difference Analog of the Knizhnik-Zamolodchikov System. Lett. Math. Phys.26, 153–165 (1992)MATHMathSciNetCrossRefGoogle Scholar
  15. [S1]
    Sklyanin, E.K.: Some Algebraic Structures Connected with the Yang-Baxter Equation. Funkts. analiz i ego Prilozh.16–4, 27–34 (1982) (in Russian); Funct. Anal. Appl.16, 263–270 (1983) (English transl.)MathSciNetGoogle Scholar
  16. [S2]
    Skyanin, E.K.: Some Algebraic Structures Connected with the Yang-Baxter Equation. Representations of Quantum Algebras. Funkts. analiz i ego Prilozh.17–4, 34–48 (1983) (in Russian); Funct. Anal. Appl.17, 273–284 (1984) (English transl.)Google Scholar
  17. [T1]
    Takebe, T.: Generalized Bethe ansatz with the general spin representations of the Sklyanin algebra. J. Phys. A: Math. Gen25, 1071–1083 (1992); Bethe Ansatz for Higher Spin Eight-Vertex Models. J. Phys. A: Math. Gen.28, 6675–6706 (1995)MATHMathSciNetCrossRefADSGoogle Scholar
  18. [T2]
    Takebe, T.: Bethe Ansatz for Higher Spin XYZ Models—Low-lying excitations—. J. Phys. A: Math. Gen.29, 6961–6966 (1996)MATHMathSciNetCrossRefADSGoogle Scholar
  19. [TF]
    Takhtajan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Uspekhi Mat. Nauk34:5, 13–63 (1979) (in Russian); Russ. Math. Surv.34:5, 11–68 (1979) (English transl.)Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Takashi Takebe
    • 1
  1. 1.Department of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations