Russian Physics Journal

, Volume 42, Issue 4, pp 416–419 | Cite as

Shear surface acoustic waves in the stratified structure piezoelectric—High-temperature granular superconductor

  • E. S. Kovalenko
  • V. A. Krakovskii
Solid State Physics


The interaction of a Gulyaev-Bluestain surface wave with a granular high-temperature superconducting (HTSC) medium has been investigated. For piezoelectrics of symmetry 4mm and 6mm, dispersion equations have been derived that describe the characteristics of surface acoustic waves (SAWs). The temperature dependences of the SAW attenuation and phase have been calculated forZnO andBa 2Si2TiO3 crystals. It is shown that at temperatures higher than the critical temperature an attenuation jump and a phase shift are observed. The effect intensifies with increase in the electromechanical coupling coefficient and with decrease in the thickness of the HTSC film. For theBa 2Si2TiO3 crystal the attenuation jump and phase shift are11 dB/cm and38 deg/cm, respectively, at a frequency of820 MHz. The results obtained can also be generalized for periodic HTSC structures and can be used to design frequency-selective devices and fast-response bolometric photodetectors.


Dispersion Equation Surface Acoustic Wave Electromechanical Coupling Coefficient Transverse Wave Number HTSC Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Fossheim and T. Ladreid, IBM J. Res. Develop.,33, No. 3, 365 (1989).CrossRefGoogle Scholar
  2. 2.
    V. D. Nacik and P. Pal-Val, Fiz. Nizkikh Temp.,16, No. 6, 806 (1990).ADSGoogle Scholar
  3. 3.
    V. N. Belopomestnykh, O. L. Khasanov, and Yu. Konsyu, Sverkhprovod.: Fiz., Khim., Tekhnol.,2, No. 9, 119 (1989).Google Scholar
  4. 4.
    F. Miglori, T. Chen, B. Alavi, and G. Gruner, Solid State Commun.,63 No. 9, 827 (1987).CrossRefADSGoogle Scholar
  5. 5.
    V. P. Malikov, B. L. Tipan, Yu. P. Belogurov, et al., Sverkhprovod.: Fiz., Khim., Tekhnol.,3, No. 5, 884 (1990).Google Scholar
  6. 6.
    M. K. Balakirev and I. A. Gilinskii, Waves in Piezoelectric Crystals [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  7. 7.
    V. I. Al'tshits and V. N. Lyubimov, Fiz. Tverd. Tela,31, No. 3, 181 (1989).Google Scholar
  8. 8.
    N. I. Burimov, L. Ya. Serebrennikov, and S. M. Shandarov, Izv. Vysshikh Uchebn. Zaved., Fiz., No. 2, 362 (1989).Google Scholar
  9. 9.
    E. V. Balashov, V. V. Lemanov, F. A. Chudkovskii, et al., Pis'ma Zh. Tekh. Fiz.,15, No. 1, 11 (1989).Google Scholar
  10. 10.
    E. S. Kovalenko, N. I. Burimov, and L. Y. Serebrennicov, in: Proc. V National Conf. Acoustoelectronics-91, Varna, Bulgaria (1991), p. 12.Google Scholar
  11. 11.
    V. A. Krakoskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 94–98 (1997).Google Scholar
  12. 12.
    V. A. Krakovskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 97–102 (1998).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. S. Kovalenko
  • V. A. Krakovskii

There are no affiliations available

Personalised recommendations